ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Aligned nanotube bundles  (1)
  • EXAFS of catalysts  (1)
  • 1
    ISSN: 1433-075X
    Keywords: Key words Carbon nanotubes ; Single-walled nanotubes ; Aligned nanotube bundles ; Nanorods
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract  Pyrolysis of organometallic precursors such as metallocenes and iron pentacarbonyl as well as of their mixtures with hydrocarbons such as acetylene or benzene has been carried out under a variety of conditions to synthesize nanotubes. While the use of benzene as a hydrocarbon source generally yields multi-walled nanotubes, it has been possible to obtain single-walled nanotubes (∼1 nm diameter) by pyrolyzing a metallocene or a mixture of metallocenes along with acetylene under a high flow rate of Ar. These experiments show that the organometallic precursor produces small nanoparticles of ∼1 nm diameter which then catalyze the formation of the single-walled nanotubes. Copious quantities of aligned-nanotube bundles have been obtained by the pyrolysis of acetylene in the presence of high concentrations of ferrocene. Nanorods have been produced by the pyrolysis of ferrocene under vacuum. Single walled nanotubes can be filled or decorated by metals.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1572-879X
    Keywords: SMSI ; strong metal-support interaction ; Ni/TiO2 catalyst ; EXAFS of catalysts
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract In situ EXAFS and X-ray diffraction investigations of Ni/TiO2 catalysts show that NiTiO3 is formed as an intermediate during calcination of catalyst precursors prepared by the wet-impregnation method; the intermediate is not formed when ion-exchange method is used for the preparation. On hydrogen reduction, NiTiO3 gives rise to Ni particles dispersed in the TiO2(rutile) matrix. The occurrence of the anatase-rutile transformation of the TiO2 support, the formation and subsequent decomposition/reduction of NiTiO3 as well as the unique interface properties of the Ni particles are all factors of importance in giving rise to metal-support interaction. Active TiO2(anatase) prepared from gel route gives an additional species involving Ni3+.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...