ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Alder  (2)
  • Environment Pollution  (2)
  • Phosphorus  (2)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 77 (1988), S. 506-514 
    ISSN: 1432-1939
    Keywords: Carbohydrate ; Growth form ; Nitrogen ; Phosphorus ; Tundra
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary In a survey of 28 plant species of 6 major growth forms from Alaskan tundra, we found no consistent difference among growth forms in the chemical nature of stored reserves except for lichens and mosses (which stored C primarily as polysaccharides) and shrubs (which tended to store C more as sugars than as polysaccharides). Forbs and graminoids showed particularly great diversity in the chemical nature of stored reserves. In contrast, C, N, and P chemistry of leaves was strikingly similar among all species and growth forms. Concentrations of stored reserves of C, N, and P were highest and showed greatest seasonal fluctuations in forbs and graminoids but were relatively constant in evergreen shrubs. From this information, we draw three general conclusions: (1) the photosynthetic function of leaves strongly constrains leaf chemistry so that similar chemical composition is found in all species and growth forms: (2) the chemical nature of storage reserves is highly variable, both within and among growth forms; (3) the concentration and seasonal pattern of storage reserves are closely linked to growth-form and reflect growth-form differences in woodiness, phenology, and relative dependence upon concurrent uptake vs. storage in support of growth.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1939
    Keywords: Snowshoe hare ; Birch ; Alder ; Chemical defense ; Plant carbon/nutrient balance
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Plant carbon/nutrient balance has been implicated as an important factor in plant defensive chemistry and palatability to herbivores. We tested this hypothesis by fertilizing juvenile growth form Alaska paper birch and green alder with N, P and N-plus-P in a balanced 2x2 factorial experiment. Additionally, we shaded unfertilized plants of both species. Fertilization with N and N-plus-P increased growth of Alaska paper birch, reduced the concentration of papyriferic acid in internodes and increased the palatability of birch twigs to snowshoe hares. Shading decreased birch growth, decreased the concentration of papyriferic acid in internodes and increased twig palatability. These results indicate that the defensive chemistry and palatability of winter-dormant juvenile Alaska paper birch are sensitive to soil fertility and shade. Conversely the defensive chemistry and palatability of green alder twigs to snowshoe hares were not significantly affected by soil fertility or shade. The greater sensitivity of Alaska paper birch defensive chemistry and palatability to snowshoe hares in comparison to green alder is in agreement with the hypothesis that early successional woody plants that are adapted to high resource availability are more plastic in their chemical responses to the physical environment than are species from less favorable environments.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-1939
    Keywords: Allocation ; Growth ; Phosphorus ; Photosynthesis ; Seed size
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Under favorable nutrition, accessions of the weedy barleygrass (Hordeum leporinum and H. glaucum) had a higher relative growth rate (RGR) than did accessions of cultivated barley (H. vulgare) or its wild progenitor (H. spontaneum). RGR was not positively correlated with the presumed level of soil fertility at the collection site of an accession either within or among species. RGR was reduced more strongly by low-P supply in the progenitor than in the crop or weed, indicating that selection of cultivars to grow in fertile soils had not reduced their potential to grow effectively under low-P conditions. Seed and embryo masses were more important than RGR in determining plant size. Relative differences among assessions in plant size declined with time, because (1) accessions with small seeds had a higher RGR, and (2) RGR of large-seeded accessions declined with time. Absolute growth rate correlated positively with leaf area and negatively with photosynthetic rate per unit leaf area. Under favorable nutrition, maximum photosynthetic rate correlated negatively with leaf length and therefore was higher in the weeds than in the crop or progenitor accessions. P absorption potential did not differ consistently among species but generally increased in response to P stress. Cultivars produced a few tall tillers, whereas weeds and progenitors produced many small tillers. The cultivar had a larger proportion of reproductive tillers, allocated a larger proportion of biomass to grain, and produced larger grains than did the weedy accession. By contrast, the weed began maturing seeds sooner, produced more reproductive tillers, and produced more grains per car and per plant than did the cultivar. The study suggests two major conclusions: (1) A low RGR is not an adaptation to low P supply in annual Hordeum species. (2) Seed size is the major determinant of early plant size between accessions in these Hordeum species under favorable nutrition. However, large seed size indirectly results in a low RGR because of the inverse relationship between plant size and RGR and results in a low photosynthetic rate because of the inverse relationship between leaf size and photosynthesis.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 79 (1989), S. 412-416 
    ISSN: 1432-1939
    Keywords: Alder ; Competition ; Growth ; Regular spacing ; Tundra
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Alders (Alnus crispa) in shrub tundra in northern Alaska showed significant regularity of spacing. Removal of neighboring alder shrubs stimulated nutrient accumulation and growth of remaining alders but did not stimulate nutrient accumulation or growth of any other shrub species. This demonstrates that neighboring alders competed with one another and that, when alders were removed, the resources made available were used preferentially by remaining alders rather than by the community in general. Neither patterns of seedling establishment nor patterns of frostrelated features could explain the regular distribution of alder. We suggest that regular patterns of plant distribution are restricted to sites of low-resource availability, because in these habitats (1) there is strong competition for a scarce resource, and (2) there are only one or a few dominant species to compete for these resources in a given canopy height or rooting depth.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-06-06
    Description: Long-term monitoring of aerosol optical properties at a boreal forest AERONET site in interior Alaska was performed from 1994 through 2008 (excluding winter). Large interannual variability was observed, with some years showing near background aerosol optical depth (AOD) levels (〈0.1 at 500 nm) while 2004 and 2005 had August monthly means similar in magnitude to peak months at major tropical biomass burning regions. Single scattering albedo (omega (sub 0); 440 nm) at the boreal forest site ranged from approximately 0.91 to 0.99 with an average of approximately 0.96 for observations in 2004 and 2005. This suggests a significant amount of smoldering combustion of woody fuels and peat/soil layers that would result in relatively low black carbon mass fractions for smoke particles. The fine mode particle volume median radius during the heavy burning years was quite large, averaging approximately 0.17 micron at AOD(440 nm) = 0.1 and increasing to approximately 0.25 micron at AOD(440 nm) = 3.0. This large particle size for biomass burning aerosols results in a greater relative scattering component of extinction and, therefore, also contributes to higher omega (sub 0). Additionally, monitoring at an Arctic Ocean coastal site (Barrow, Alaska) suggested transport of smoke to the Arctic in summer resulting in individual events with much higher AOD than that occurring during typical spring Arctic haze. However, the springtime mean AOD(500 nm) is higher during late March through late May (approximately 0.150) than during summer months (approximately 0.085) at Barrow partly due to very few days with low background AOD levels in spring compared with many days with clean background conditions in summer.
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-08-16
    Description: In the field, dark respiration rates are greatest in cores from more northerly locations. This is due in part to greater amounts of dwarf shrub biomass in the more northerly cores, but also to differences in soil organic matter quality. Laboratory incubations of these soils under common conditions show some evidence for greater pools of available carbon in soils from more northerly tundra sites, although the most northerly site does not fit this pattern for reasons which are unclear at this time. While field measurements of cores transplanted among different vegetation types at the same location (Toolik Lake) show relatively small differences in whole ecosystem carbon flux, laboratory incubation of these same soils shows that there are large differences in soil respiration rates under common conditions. This is presumably due to differences in organic matter quality. Microenvironmental site factors (temperature, soil moisture, degree of anaerobiosis, etc.) may be responsible for evening out these differences in the field. These site factors, which differ with slope, aspect, and drainage within a given location along the latitudinal gradient, appear to exert at least as strong a control over carbon fluxes as do macroclimatic factors among sites across the latitudinal gradient. While our field measurements indicate that, in the short term, warming will tend to increase ecosystem losses Of CO2 via respiration more than they will increase plant gross assimilation, the degree to which different topographically-defined plant communities will respond is likely to vary.
    Keywords: Environment Pollution
    Type: NASA/CR-97-113018 , NAS 1.26:113018
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...