ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • STRUCTURAL MECHANICS  (3)
  • Aircraft Propulsion and Power  (1)
  • 1
    Publication Date: 2011-08-24
    Description: Most methods of system identification of large flexible structures by far are based on the lumped parameter approach. Because of the considerable computational burden due to the large number of unknown parameters, distributed parameter approach, which greatly decreases the number of unknowns, has being investigated. In this paper a distributed parameter model for the estimation of modal characteristics of NASA Mini-Mast truss has been formulated. Both Bernoulli-Euler beam and Timoshenko beam equations are used to characterize the lateral bending vibrations of the truss. The measurement of the lateral displacement at the tip of the truss is provided to the maximum likelihood estimator. Closed-form solutions of the partial differential equations and closed-form expressions of the sensitivity functions are derived so that the estimation algorithm is highly efficient. The resulting estimates from test data by using Timoshenko beam model are found to be comparable to those derived from finite element analysis.
    Keywords: STRUCTURAL MECHANICS
    Type: In: Structures sensing and control; Proceedings of the Meeting, Orlando, FL, Apr. 2, 3, 1991 (A93-22001 07-35); p. 266-277.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-19
    Description: A special class of nonlinear damping models is investigated in which the damping force is proportional to the product of positive integer or the fractional power of the absolute values of displacement and velocity. For a one-degree-of-freedom system, the classical Krylov-Bogoliubov 'averaging' method is used, whereas for a distributed system, both an ad hoc perturbation technique and the finite difference method are employed to study the effects of nonlinear damping. The results are compared with linear viscous damping models. The amplitude decrement of free vibration for a single mode system with nonlinear models depends not only on the damping ratio but also on the initial amplitude, the time to measure the response, the frequency of the system, and the powers of displacement and velocity. For the distributed system, the action of nonlinear damping is found to reduce the energy of the system and to pass energy to lower modes.
    Keywords: STRUCTURAL MECHANICS
    Type: Journal of Guidance, Control, and Dynamics (ISSN 0731-5090); 14; 77-83
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-08-31
    Description: Distributed parameter modeling offers a viable alternative to the finite element approach for modeling large flexible space structures. The introduction of the transfer matrix method into the continuum modeling process provides a very useful tool to facilitate the distributed parameter model applied to some more complex configurations. A uniform Timoshenko beam model for the estimation of the dynamic properties of beam-like structures has given comparable results. But many aeronautical and aerospace structures are comprised of non-uniform sections or sectional properties, such as aircraft wings and satellite antennas. This paper proposes a piecewise continuous Timoshenko beam model which is used for the dynamic analysis of tapered beam-like structures. A tapered beam is divided into several segments of uniform beam elements. Instead of arbitrarily assumed shape functions used in finite element analysis, the closed-form solution of the Timoshenko beam equation is used. Application of the transfer matrix method relates all the elements as a whole. By corresponding boundary conditions and compatible conditions a characteristic equation for the global tapered beam has been developed, from which natural frequencies can be derived. A computer simulation is shown in this paper, and compared with the results obtained from the finite element analysis. While piecewise continuous Timoshenko beam model decreases the number of elements significantly; comparable results to the finite element method are obtained.
    Keywords: STRUCTURAL MECHANICS
    Type: North Carolina Agricultural and Technical State Univ., The Center for Aerospace Research: A NASA Center of Excellence at North Carolina Agricultural and Technical State University; 13 p
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: Designing a hypersonic vehicle is a complicated process due to the multi-disciplinary synergy that is required. The greatest challenge involves propulsion-airframe integration. In the past, a two-dimensional flowpath was generated based on the engine performance required for a proposed mission. A three-dimensional CAD geometry was produced from the two-dimensional flowpath for aerodynamic analysis, structural design, and packaging. The aerodynamics, engine performance, and mass properties arc inputs to the vehicle performance tool to determine if the mission goals were met. If the mission goals were not met, then a flowpath and vehicle redesign would begin. This design process might have to be performed several times to produce a "closed" vehicle. This paper will describe an attempt to design a hypersonic cruise vehicle propulsion flowpath using a Design of' Experiments method to reduce the resources necessary to produce a conceptual design with fewer iterations of the design cycle. These methods also allow for more flexible mission analysis and incorporation of additional design constraints at any point. A design system was developed using an object-based software package that would quickly generate each flowpath in the study given the values of the geometric independent variables. These flowpath geometries were put into a hypersonic propulsion code and the engine performance was generated. The propulsion results were loaded into statistical software to produce regression equations that were combined with an aerodynamic database to optimize the flowpath at the vehicle performance level. For this example, the design process was executed twice. The first pass was a cursory look at the independent variables selected to determine which variables are the most important and to test all of the inputs to the optimization process. The second cycle is a more in-depth study with more cases and higher order equations representing the design space.
    Keywords: Aircraft Propulsion and Power
    Type: AIAA Paper 2000-2694 , Aerodynamic Measurement Technology and Ground Testing; Jun 19, 2000 - Jun 22, 2000; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...