ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Weitere Quellen  (4)
  • Spacecraft Design, Testing and Performance  (2)
  • INSTRUMENTATION AND PHOTOGRAPHY  (1)
  • LASERS AND MASERS  (1)
  • 1
    Publikationsdatum: 2011-08-19
    Beschreibung: Laser-induced N2 ionization is accomplished using a commercially available Nd:YAG laser, and confirmed by means of ion-collection and spectral measurements. Neutral N2 is excited by six photons of the third harmonic frequency, or 355 nm, and is transformed to an ionized state. The radiation at 355 nm is separated from the fundamental and frequency-doubled Nd:YAG radiation to guarantee monochromatic incident radiation. Intense lines near 391.4 nm are found in the initial laser polarization and for a 90-degree rotation of polarization. The radiation at 391.4 nm is associated with an incoherent laser-induced flourescence process related to an ionized-state transition, and increases quadratically with laser power. A 45-mJ laser pulse focused to a diameter of 17 microns can produce an ion concentration of 3.25 x 10 to the 13th ions/cu cm. The large ion concentration and robust fluorescence signal make this technique an efficient method for time-of-flight velocimetry and in-flight testing.
    Schlagwort(e): LASERS AND MASERS
    Materialart: Optics Letters (ISSN 0146-9592); 16; 1037-103
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2019-07-13
    Beschreibung: Flight measurement is a critical phase in development, validation and certification processes of technologies destined for future civilian and military operational capabilities. This paper focuses on several recent NASA-sponsored remote observations that have provided unique engineering and scientific insights of reentry vehicle flight phenomenology and performance that could not necessarily be obtained with more traditional instrumentation methods such as onboard discrete surface sensors. The missions highlighted include multiple spatially-resolved infrared observations of the NASA Space Shuttle Orbiter during hypersonic reentry from 2009 to 2011, and emission spectroscopy of comparatively small-sized sample return capsules returning from exploration missions. Emphasis has been placed upon identifying the challenges associated with these remote sensing missions with focus on end-to-end aspects that include the initial science objective, selection of the appropriate imaging platform and instrumentation suite, target flight path analysis and acquisition strategy, pre-mission simulations to optimize sensor configuration, logistics and communications during the actual observation. Explored are collaborative opportunities and technology investments required to develop a next-generation quantitative imaging system (i.e., an intelligent sensor and platform) with greater capability, which could more affordably support cross cutting civilian and military flight test needs.
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: NF1676L-15370 , 2013 IEEE Aerospace Conference; Mar 02, 2013 - Mar 09, 2013; Big Sky, MT; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2019-07-13
    Beschreibung: Flight-testing is traditionally an expensive but critical element in the development and ultimate validation and certification of technologies destined for future operational capabilities. Measurements obtained in relevant flight environments also provide unique opportunities to observe flow phenomenon that are often beyond the capabilities of ground testing facilities and computational tools to simulate or duplicate. However, the challenges of minimizing vehicle weight and internal complexity as well as instrumentation bandwidth limitations often restrict the ability to make high-density, in-situ measurements with discrete sensors. Remote imaging offers a potential opportunity to noninvasively obtain such flight data in a complementary fashion. The NASA Hypersonic Thermodynamic Infrared Measurements Project has demonstrated such a capability to obtain calibrated thermal imagery on a hypersonic vehicle in flight. Through the application of existing and accessible technologies, the acreage surface temperature of the Shuttle lower surface was measured during reentry. Future hypersonic cruise vehicles, launcher configurations and reentry vehicles will, however, challenge current remote imaging capability. As NASA embarks on the design and deployment of a new Space Launch System architecture for access beyond earth orbit (and the commercial sector focused on low earth orbit), an opportunity exists to implement an imagery system and its supporting infrastructure that provides sufficient flexibility to incorporate changing technology to address the future needs of the flight test community. A long term vision is offered that supports the application of advanced multi-waveband sensing technology to aid in the development of future aerospace systems and critical technologies to enable highly responsive vehicle operations across the aerospace continuum, spanning launch, reusable space access and global reach. Motivations for development of an Agency level imagery-based measurement capability to support cross cutting applications that span the Agency mission directorates as well as meeting potential needs of the commercial sector and national interests of the Intelligence, Surveillance and Reconnaissance community are explored. A recommendation is made for an assessment study to baseline current imaging technology including the identification of future mission requirements. Development of requirements fostered by the applications suggested in this paper would be used to identify technology gaps and direct roadmapping for implementation of an affordable and sustainable next generation sensor/platform system.
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: AIAA Paper 2011-3325 , NF1676L-11851 , 42nd AIAA Thermophysics Conference; Jun 27, 2011 - Jun 30, 2011; Honolulu, HI; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2019-07-13
    Beschreibung: Conditions for obtaining laser-induced O2 fluorescence using a tunable KrF laser has been determined theoretically and experimentally. With this laser source, O2 rotational temperature measurement is possible even in the absence of vibrational equilibrium. Temperature measurement using a two-line excitation scheme has been demonstrated in a high-temperature atmospheric-air furnace. A measurement uncertainty of 10.7 percent for the temperature range 1325-1725 K was realized. At atmospheric pressure, O2 LIF measurements are possible for air temperatures above 1250 K. Interference from OH fluorescence in reacting flows can be avoided by the proper selection of O2 transitions. Depletion of the ground state population by the incident laser is negligible for intensities below 7.5 x 10 to the 6th W/sq cm/per cm.
    Schlagwort(e): INSTRUMENTATION AND PHOTOGRAPHY
    Materialart: AIAA PAPER 93-0045 , ; 8 p.|AIAA, Aerospace Sciences Meeting and Exhibit; Jan 11, 1993 - Jan 14, 1993; Reno, NV; United States
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...