ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-10-20
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution-NonCommercial‐NoDerivs License. The definitive version was published in Clayson, C. A., & Edson, J. B. Diurnal surface flux variability over western boundary currents. Geophysical Research Letters, 46(15), (2019): 9174-9182, doi:10.1029/2019GL082826.
    Description: An analysis of a satellite ocean surface turbulent flux product demonstrated that, as expected, the western boundary current regions dominate the seasonal cycle amplitude. Surprisingly, our analysis of the global ocean diurnal flux variability also demonstrated a regional maximum in the winter over the western boundary current regions. We conducted comparisons with in situ data from several buoys located in these regions. The buoy data were in general agreement with the relative magnitude, timing, and importance of each of the bulk parameters driving the latent and sensible heat fluxes. Further analysis demonstrated that the strength and timing of the diurnal signal is related to the location of the buoy relative to the region of maximum heat flux and sea surface temperature gradient. In both regions, the timing of the higher winds coincides with the moistest surface layer, indicating that surface fluxes rather than entrainment mixing play a key role in this phenomenon.
    Description: CAC gratefully acknowledges funding from the NASA MAP and NEWS programs (NNX13AN48G and NNX15AI47A). CLIMODE data were funded by the U.S. National Science Foundation (http://uop.whoi.edu/projects/CLIMODE/climodedata.html). KEO data are provided by the OCS Project Office of NOAA/PMEL (https://www.pmel.noaa.gov/ocs/data/disdel/). JKEO data are provided by RIGC/JAMSTEC and PMEL/NOAA (http://www.jamstec.go.jp/iorgc/ocorp/ktsfg/data/jkeo/). SeaFlux data are provided by the U.S. NOAA Climate Data Record Program (https://www.ncdc.noaa.gov/cdr).
    Keywords: Diurnal variability ; Western boundary currents ; Surface fluxes ; Atmospheric boundary layer
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-10-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Gentemann, C. L., Clayson, C. A., Brown, S., Lee, T., Parfitt, R., Farrar, J. T., Bourassa, M., Minnett, P. J., Seo, H., Gille, S. T., & Zlotnicki, V. FluxSat: measuring the ocean-atmosphere turbulent exchange of heat and moisture from space. Remote Sensing, 12(11), (2020): 1796, doi:10.3390/rs12111796.
    Description: Recent results using wind and sea surface temperature data from satellites and high-resolution coupled models suggest that mesoscale ocean–atmosphere interactions affect the locations and evolution of storms and seasonal precipitation over continental regions such as the western US and Europe. The processes responsible for this coupling are difficult to verify due to the paucity of accurate air–sea turbulent heat and moisture flux data. These fluxes are currently derived by combining satellite measurements that are not coincident and have differing and relatively low spatial resolutions, introducing sampling errors that are largest in regions with high spatial and temporal variability. Observational errors related to sensor design also contribute to increased uncertainty. Leveraging recent advances in sensor technology, we here describe a satellite mission concept, FluxSat, that aims to simultaneously measure all variables necessary for accurate estimation of ocean–atmosphere turbulent heat and moisture fluxes and capture the effect of oceanic mesoscale forcing. Sensor design is expected to reduce observational errors of the latent and sensible heat fluxes by almost 50%. FluxSat will improve the accuracy of the fluxes at spatial scales critical to understanding the coupled ocean–atmosphere boundary layer system, providing measurements needed to improve weather forecasts and climate model simulations.
    Description: C.L.G. was funded by NASA grant 80NSSC18K0837. C.A.C. was funded by NASA grants 80NSSC18K0778 and 80NSSC20K0662. J.T.F. was funded by NASA grants NNX17AH54G, NNX16AH76G, and 80NSSC19K1256. S.T.G. was funded by the National Science Foundation grant PLR-1425989 and by the NASA Ocean Vector Winds Science Team grant 80NSSC19K0059. M.B. was funded in part by the Ocean Observing and Monitoring Division, Climate Program Office (FundRef number 100007298), National Oceanic and Atmospheric Administration, U.S. Department of Commerce, and by the NASA Ocean Vector Winds Science Team grant through NASA/JPL. H.S. was funded by National Oceanic and Atmospheric Administration (NOAA) grant NA19OAR4310376 and the Andrew W. Mellon Foundation Endowed Fund for Innovative Research at Woods Hole Oceanographic Institution.
    Keywords: Air-sea interactions ; Mesoscale ; Fluxes
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...