ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Greenland  (11)
  • Fjord  (6)
  • Fjord circulation  (3)
  • Meltwater  (3)
  • Air-sea interaction  (2)
  • Atmosphere-ocean interaction  (2)
  • Circulation  (2)
Collection
Keywords
Years
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2014. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 119 (2014): 8838–8857, doi:10.1002/2014JC010134.
    Description: We present a year-round assessment of the hydrographic variability within the East Greenland Coastal Current on the Greenland shelf from five synoptic crossings and 4 years of moored hydrographic data. From the five synoptic sections the current is observed as a robust, surface intensified flow with a total volume transport of 0.66 ± 0.18 Sv and a freshwater transport of 42 ± 12 mSv. The moorings showed heretofore unobserved variability in the abundance of Polar and Atlantic water masses in the current on synoptic scales. This is exhibited as large vertical displacement of isotherms (often greater than 100 m). Seasonally, the current is hemmed into the coast during the fall by a full depth Atlantic Water layer that has penetrated onto the inner shelf. The Polar Water layer in the current then thickens through the winter and spring seasons increasing the freshwater content in the current; the timing implies that this is probably driven by the seasonally varying export of freshwater from the Arctic and not the local runoff from Greenland. The measured synoptic variability is enhanced during the winter and spring period due to a lower halocline and a concurrent enhancement in the along-coast wind speed. The local winds force much of the high-frequency variability in a manner consistent with downwelling, but variability distinct from downwelling is also visible.
    Description: This work was funded by the National Science Foundation grant OCE-1130008, NASA grant NNX13AK88G, and the Ocean and Climate Change Institute at the Woods Hole Oceanographic Institution.
    Description: 2015-06-23
    Keywords: Greenland ; Freshwater ; Coastal current ; Fjord
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2014. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 41 (2014): 8411–8420, doi:10.1002/2014GL062256.
    Description: Large, deep-keeled icebergs are ubiquitous in Greenland's outlet glacial fjords. Here we use the movement of these icebergs to quantify flow variability in Sermilik Fjord, southeast Greenland, from the ice mélange through the fjord to the shelf. In the ice mélange, a proglacial mixture of sea ice and icebergs, we find that icebergs consistently track the glacier speed, with slightly faster speeds near terminus and episodic increases due to calving events. In the fjord, icebergs accurately capture synoptic circulation driven by both along-fjord and along-shelf winds. Recirculation and in-/out-fjord variations occur throughout the fjord more frequently than previously reported, suggesting that across-fjord velocity gradients cannot be ignored. Once on the shelf, icebergs move southeastward in the East Greenland Coastal Current, providing wintertime observations of this freshwater pathway.
    Description: Funding for this study was provided by National Science Foundation grants OCE-1130008 and ARC-0909274, and by the University of Oregon.
    Description: 2015-06-11
    Keywords: Icebergs ; Fjord circulation ; Ice mélange ; East Greenland Current ; Greenland ice sheet ; Iceberg melt
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: video/quicktime
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2014. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 41 (2014): 8619–8626, doi:10.1002/2014GL062107.
    Description: We describe the recent occurrence of a region of diminished sea ice cover or “notch” offshore of the Kangerdlugssuaq Fiord, the site of the largest tidewater glacier along Greenland's southeast coast. The notch's location is consistent with a topographically forced flux of warm water toward the fiord, and the decrease of the sea ice cover is shown to be associated with a regional warming of the upper ocean that began in the mid-1990s. Sea ice in the vicinity of the notch also exhibits interannual variability that is shown to be associated with a seesaw in surface temperature and sea ice between southeast and northeast Greenland that is not describable solely in terms of the North Atlantic Oscillation. We therefore argue that other modes of atmospheric variability, including the Lofoten Low, are required to fully document the changes to the climate that are occurring along Greenland's east coast.
    Description: G.W.K.M. was supported by the Natural Sciences and Engineering Research Council of Canada. F.S. and M.O. were supported by NSF OCE 1130008 and NASA NNX13AK88G.
    Description: 2015-06-02
    Keywords: Greenland ; Sea ice ; Interannual variability ; Lofoten Low ; Icelandic Low
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/msword
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 42 (2015): 7648–7654, doi:10.1002/2015GL064944.
    Description: The mass loss at Nioghalvfjerdsbræ is primarily due to rapid submarine melting. Ocean data obtained from beneath the Nioghalvfjerdsbræ ice tongue show that melting is driven by the presence of warm (1°C) Atlantic Intermediate Water (AIW). A sill prevents AIW from entering the cavity from Dijmphna Sund, requiring that it flow into the cavity via bathymetric channels to the south at a pinned ice front. Comparison of water properties from the cavity, Dijmphna Sund, and the continental shelf support this conclusion. Overturning circulation rates inferred from observed melt rates and cavity stratification suggest an exchange flow between the cavity and the continental shelf of 38mSv, sufficient to flush cavity waters in under 1 year. These results place upper bounds on the timescales of external variability that can be transmitted to the glacier via the ice tongue cavity.
    Description: NASA Grant Number: NNX13AK88G, NSF Grant Number: OCE-1434041
    Description: 2016-03-22
    Keywords: 79North ; Ice tongue ; NEGIS ; Nioghalvfjerdsfjorden ; Circulation ; Ice-ocean
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 45 (2018): 4163-4170, doi:10.1029/2018GL077000.
    Description: The Greenland Ice Sheet has been, and will continue, losing mass at an accelerating rate. The influence of this anomalous meltwater discharge on the regional and large‐scale ocean could be considerable but remains poorly understood. This uncertainty is in part a consequence of challenges in observing water mass transformation and meltwater spreading in coastal Greenland. Here we use tracer observations that enable unprecedented quantification of the export, mixing, and vertical distribution of meltwaters leaving one of Greenland's major glacial fjords. We find that the primarily subsurface meltwater input results in the upwelling of the deep fjord waters and an export of a meltwater/deepwater mixture that is 30 times larger than the initial meltwater release. Using these tracer data, the vertical structure of Greenland's summer meltwater export is defined for the first time showing that half the meltwater export occurs below 65 m.
    Description: National Science Foundation Grant Number: OCE-1536856
    Description: 2018-11-05
    Keywords: Greenland ; Ocean-glacier interactions ; Fjord circulation ; Meltwater ; Noble gas ; Overturning
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of the Atmospheric Sciences 72 (2015): 2786–2805, doi:10.1175/JAS-D-14-0257.1.
    Description: In Ammassalik, in southeast Greenland, downslope winds can reach hurricane intensity and represent a hazard for the local population and environment. They advect cold air down the ice sheet and over the Irminger Sea, where they drive large ocean–atmosphere heat fluxes over an important ocean convection region. Earlier studies have found them to be associated with a strong katabatic acceleration over the steep coastal slopes, flow convergence inside the valley of Ammassalik, and—in one instance—mountain wave breaking. Yet, for the general occurrence of strong downslope wind events, the importance of mesoscale processes is largely unknown. Here, two wind events—one weak and one strong—are simulated with the atmospheric Weather Research and Forecasting (WRF) Model with different model and topography resolutions, ranging from 1.67 to 60 km. For both events, but especially for the strong one, it is found that lower resolutions underestimate the wind speed because they misrepresent the steepness of the topography and do not account for the underlying wave dynamics. If a 5-km model instead of a 60-km model resolution in Ammassalik is used, the flow associated with the strong wind event is faster by up to 20 m s−1. The effects extend far downstream over the Irminger Sea, resulting in a diverging spatial distribution and temporal evolution of the heat fluxes. Local differences in the heat fluxes amount to 20%, with potential implications for ocean convection.
    Description: This study was supported by grants of the National Science Foundation (OCE- 0751554 and OCE-1130008) as well as the Natural Sciences and Engineering Research Council of Canada.
    Description: 2016-01-01
    Keywords: Katabatic winds ; Severe storms ; Air-sea interaction ; Mesoscale processes ; Orographic effects ; Model evaluation/performance
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 42 (2015): 7705–7713, doi:10.1002/2015GL065003.
    Description: We present the first noble gas observations in a proglacial fjord in Greenland, providing an unprecedented view of surface and submarine melt pathways into the ocean. Using Optimum Multiparameter Analysis, noble gas concentrations remove large uncertainties inherent in previous studies of meltwater in Greenland fjords. We find glacially modified waters with submarine melt concentrations up to 0.66 ± 0.09% and runoff 3.9 ± 0.29%. Radiogenic enrichment of Helium enables identification of ice sheet near-bed melt (0.48 ± 0.08%). We identify distinct regions of meltwater export reflecting heterogeneous melt processes: a surface layer of both runoff and submarine melt and an intermediate layer composed primarily of submarine melt. Intermediate ocean waters carry the majority of heat to the fjords' glaciers, and warmer deep waters are isolated from the ice edge. The average entrainment ratio implies that ocean water masses are upwelled at a rate 30 times the combined glacial meltwater volume flux.
    Description: We gratefully acknowledge funding from WHOI's Ocean and Climate Change Institute, the Doherty Postdoctoral Scholarship, and ship time from the Advanced Climate Dynamics Summer School (SiU grant NNA-2012/10151).
    Description: 2016-03-30
    Keywords: Glacial melt ; Noble gases ; Tracers ; Meltwater ; Greenland ; Fjord
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-25
    Description: © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Journal of Geophysical Research: Biogeosciences 121 (2016): 675-717, doi:10.1002/2015JG003140.
    Description: The Arctic Ocean is a fundamental node in the global hydrological cycle and the ocean's thermohaline circulation. We here assess the system's key functions and processes: (1) the delivery of fresh and low-salinity waters to the Arctic Ocean by river inflow, net precipitation, distillation during the freeze/thaw cycle, and Pacific Ocean inflows; (2) the disposition (e.g., sources, pathways, and storage) of freshwater components within the Arctic Ocean; and (3) the release and export of freshwater components into the bordering convective domains of the North Atlantic. We then examine physical, chemical, or biological processes which are influenced or constrained by the local quantities and geochemical qualities of freshwater; these include stratification and vertical mixing, ocean heat flux, nutrient supply, primary production, ocean acidification, and biogeochemical cycling. Internal to the Arctic the joint effects of sea ice decline and hydrological cycle intensification have strengthened coupling between the ocean and the atmosphere (e.g., wind and ice drift stresses, solar radiation, and heat and moisture exchange), the bordering drainage basins (e.g., river discharge, sediment transport, and erosion), and terrestrial ecosystems (e.g., Arctic greening, dissolved and particulate carbon loading, and altered phenology of biotic components). External to the Arctic freshwater export acts as both a constraint to and a necessary ingredient for deep convection in the bordering subarctic gyres and thus affects the global thermohaline circulation. Geochemical fingerprints attained within the Arctic Ocean are likewise exported into the neighboring subarctic systems and beyond. Finally, we discuss observed and modeled functions and changes in this system on seasonal, annual, and decadal time scales and discuss mechanisms that link the marine system to atmospheric, terrestrial, and cryospheric systems.
    Description: World Climate Research Program-Climate and Cryosphere (WCRP-CliC); Arctic Monitoring and Assessment Program (AMAP) International Arctic Science Committee (IASC); Norwegian Ministries of Environment and of Foreign Affairs; Swedish Secretariat for Environmental Earth System Sciences (SSEESS); Swedish Polar Research Secretariat; NSF Grant Numbers: OCE 1130008, 1249133, AON-1203473, AON-1338948, OCE 1434041; Polar Research Programme of the Norwegian Research Council Grant Number: 226415
    Keywords: Arctic ; Oceans ; Circulation ; Freshwater ; Carbon cycle ; Acidification
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2016. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 43 (2016): 12,520–12,527, doi:10.1002/2016GL071602.
    Description: Icebergs account for approximately half the freshwater flux into the ocean from the Greenland and Antarctic ice sheets and play a major role in the distribution of meltwater into the ocean. Global climate models distribute this freshwater by parameterizing iceberg motion and melt, but these parameterizations are presently informed by limited observations. Here we present a record of speed and draft for 90 icebergs from Sermilik Fjord, southeastern Greenland, collected in conjunction with wind and ocean velocity data over an 8 month period. It is shown that icebergs subject to strongly sheared flows predominantly move with the vertical average of the ocean currents. If, as typical in iceberg parameterizations, only the surface ocean velocity is taken into account, iceberg speed and basal melt may have errors in excess of 60%. These results emphasize the need for parameterizations to consider ocean properties over the entire iceberg draft.
    Description: National Oceanic and AtmosphericAdministration Grant Number: NA14OAR4320106; National Oceanic and Atmospheric Administration, U.S. Department of Commerce NSF Grant Numbers: PLR-1332911, OCE-1434041, OCE-1434041, PLR-1332911
    Description: 2017-06-27
    Keywords: Icebergs ; Freshwater flux ; Modeling ; Greenland ; Dynamics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2012. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 25 (2012): 6743–6755, doi:10.1175/JCLI-D-11-00549.1.
    Description: From 1969 to 1971 convection in the Labrador Sea shut down, thus interrupting the formation of the intermediate/dense water masses. The shutdown has been attributed to the surface freshening induced by the Great Salinity Anomaly (GSA), a freshwater anomaly in the subpolar North Atlantic. The abrupt resumption of convection in 1972, in contrast, is attributed to the extreme atmospheric forcing of that winter. Here oceanic and atmospheric data collected in the Labrador Sea at Ocean Weather Station Bravo and a one-dimensional mixed layer model are used to examine the causes of the shutdown and resumption of convection in detail. These results highlight the tight coupling of the ocean and atmosphere in convection regions and the need to resolve both components to correctly represent convective processes in the ocean. They are also relevant to present-day conditions given the increased ice melt in the Arctic Ocean and from the Greenland Ice Sheet. The analysis herein shows that the shutdown was initiated by the GSA-induced freshening as well as the mild 1968/69 winter. After the shutdown had begun, however, the continuing lateral freshwater flux as well as two positive feedbacks [both associated with the sea surface temperature (SST) decrease due to lack of convective mixing with warmer subsurface water] further inhibited convection. First, the SST decrease reduced the heat flux to the atmosphere by reducing the air–sea temperature gradient. Second, it further reduced the surface buoyancy loss by reducing the thermal expansion coefficient of the surface water. In 1972 convection resumed because of both the extreme atmospheric forcing and advection of saltier waters into the convection region.
    Description: This research was funded by a grant from the NWO/SRON User Support Programme Space Research. FS acknowledges support from OCE- 0850416 and NOAA NA08OAR4310569.
    Description: 2013-04-01
    Keywords: Atmosphere-ocean interaction ; Intermediate waters ; Oceanic variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...