ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Air pollution effects  (1)
  • CO2 enrichment  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 81 (1989), S. 124-131 
    ISSN: 1432-1939
    Keywords: Plant stress ; Raphanus sativus X raphanistrum ; Air pollution effects ; Plant nutrition ; Physiological responses
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Acclimation of wild radish plants to a simultaneous combination of SO2 fumigation and decreasing nitrate availability was investigated. Plants were grown for 24 d under continuous daytime (10h) exposure to 0 or 0.4 ppm SO2 and were grown in a nutrient solution with stable nitrate concentrations of 100 μM for the first 15 d, 50 μM from day 15 to day 19, and 25 μM from day 19 to day 24. Analysis of relative growth rates (RGR) showed that radish plants responded rapidly to changes in nitrate availability and that SO2 treatment affected those responses. Shoot RGR of plants from both treatments and root RGR of control plants showed rapid declines and subsequent recoveries in response to decreasing nitrate availability. Root RGR of SO2-treated plants declined rapidly in response to decreased nitrate availability, but did not recover as quickly or completely as root RGR of control plants. Analysis of specific leaf weights and tissue nitrogen concentrations showed that control plants had significantly higher amounts of nitrogen in tissues after nitrate availability was lowered, and had higher rates of nitrate uptake in comparison to SO2-treated plants; especially when nitrate availability was highest. Furthermore, control plants had temporarily higher rates of root respiration in comparison to SO2-treated plants, suggesting that control plants temporarily allocated more resources to physiological processes occurring in roots, such as nutrient uptake. Although SO2-induced changes in growth and resource allocation of plants were relatively small, it was probable that SO2 treatment of radish plants affected plant nitrogen balance, and subsequently affected the ability of plants to respond to decreased nitrate availibility, by affecting resource partitioning to nitrate uptake and root growth.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1939
    Keywords: Resource partitioning ; Root/shoot ratio ; CO2 enrichment ; Plant growth ; Nitrogen
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The effects of CO2 enrichment on plant growth, carbon and nitrogen acquisition and resource allocation were investigated in order to examine several hypotheses about the mechanisms that govern dry matter partitioning between shoots and roots. Wild radish plants (Raphanus sativus × raphanistrum) were grown for 25 d under three different atmospheric CO2 concentrations (200 ppm, 330 ppm and 600 ppm) with a stable hydroponic 150 μmol 1−1 nitrate supply. Radish biomass accumulation, photosynthetic rate, water use efficiency, nitrogen per unit leaf area, and starch and soluble sugar levels in leaves increased with increasing atmospheric CO2 concentration, whereas specific leaf area and nitrogen concentration of leaves significantly decreased. Despite substantial changes in radish growth, resource acquisition and resource partitioning, the rate at which leaves accumulated starch over the course of the light period and the partitioning of biomass between roots and shoots were not affected by CO2 treatment. This phenomenon was consistent with the hypothesis that root/shoot partitioning is related to the daily rate of starch accumulation by leaves during the photoperiod, but is inconsistent with hypotheses suggesting that root/shoot partitioning is controlled by some aspect of plant C/N balance.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...