ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Air Transportation and Safety; Behavioral Sciences  (1)
  • Man/System Technology and Life Support; Statistics and Probability  (1)
Collection
Keywords
Years
  • 1
    Publication Date: 2019-07-13
    Description: The Commercial Aviation Safety Team found the majority of recent international commercial aviation accidents attributable to loss of control inflight involved flight crew loss of airplane state awareness (ASA), and distraction was involved in all of them. Research on attention-related human performance limiting states (AHPLS) such as channelized attention, diverted attention, startle/surprise, and confirmation bias, has been recommended in a Safety Enhancement (SE) entitled "Training for Attention Management." To accomplish the detection of such cognitive and psychophysiological states, a broad suite of sensors was implemented to simultaneously measure their physiological markers during a high fidelity flight simulation human subject study. Twenty-four pilot participants were asked to wear the sensors while they performed benchmark tasks and motion-based flight scenarios designed to induce AHPLS. Pattern classification was employed to predict the occurrence of AHPLS during flight simulation also designed to induce those states. Classifier training data were collected during performance of the benchmark tasks. Multimodal classification was performed, using pre-processed electroencephalography, galvanic skin response, electrocardiogram, and respiration signals as input features. A combination of one, some or all modalities were used. Extreme gradient boosting, random forest and two support vector machine classifiers were implemented. The best accuracy for each modality-classifier combination is reported. Results using a select set of features and using the full set of available features are presented. Further, results are presented for training one classifier with the combined features and for training multiple classifiers with features from each modality separately. Using the select set of features and combined training, multistate prediction accuracy averaged 0.64 +/- 0.14 across thirteen participants and was significantly higher than that for the separate training case. These results support the goal of demonstrating simultaneous real-time classification of multiple states using multiple sensing modalities in high fidelity flight simulators. This detection is intended to support and inform training methods under development to mitigate the loss of ASA and thus reduce accidents and incidents.
    Keywords: Air Transportation and Safety; Behavioral Sciences
    Type: NF1676L-24736 , AIAA SciTech 2017; Jan 09, 2017 - Jan 13, 2017; Grapevine, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-11-19
    Description: Heart rate complexity (HRC) is a proven metric for gaining insight into human stress and physiological deterioration. To calculate HRC, the detection of the exact instance of when the heart beats, the R-peak, is necessary. Electrocardiogram (ECG) signals can often be corrupted by environmental noise (e.g., from electromagnetic interference, movement artifacts), which can potentially alter the HRC measurement, producing erroneous inputs which feed into decision support models. Current literature has only investigated how HRC is affected by noise when R-peak detection errors occur (false positives and false negatives). However, the numerical methods used to calculate HRC are also sensitive to the specific location of the fiducial point of the R-peak. This raises many questions regarding how this fiducial point is altered by noise, the resulting impact on the measured HRC, and how we can account for noisy HRC measures as inputs into our decision models. This work uses Monte Carlo simulations to systematically add white and pink noise at different permutations of signal-to-noise ratios (SNRs), time segments, sampling rates, and HRC measurements to characterize the influence of noise on the HRC measure by altering the fiducial point of the R-peak. Using the generated information from these simulations provides improved decision processes for system design which address key concerns such as permutation entropy being a more precise, reliable, less biased, and more sensitive measurement for HRC than sample and approximate entropy.
    Keywords: Man/System Technology and Life Support; Statistics and Probability
    Type: NF1676L-29360 , Computers in Biology and Medicine (ISSN 0010-4825) (e-ISSN 1879-0534); 103; 198-207
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...