ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Agriculture  (1)
  • Earth Resources and Remote Sensing  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Water, air & soil pollution 92 (1996), S. 13-27 
    ISSN: 1573-2932
    Keywords: Asia ; Agriculture ; El Niño
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract A number of studies have provided quantitative assessments of the potential climate change impacts on crop production in Asia. Estimates take into account (a) uncertainty in the level of climate change expected, using a range of climate change scenarios; (b) physiological effects of carbon dioxide on the crops; and (c) different adaptive responses. In all cases, the effects of climate change induced by increased atmospheric carbon dioxide depended on the counteracting effects among higher daily evapotranspiration rates, shortening of crop growth duration, and changes in precipitation patterns, as well as the effects of carbon dioxide on crop growth and water-use efficiency. Although results varied depending on the geographical locations of the regions tested, the production of rice (the main food crop in the region) generally did not benefit from climate change. In South and Southeast Asia, there is concern about how climate change may affect El Niño/Southern Oscillation events, since these play a key role in determining agricultural production. Furthermore, problems arising from variability of water availability and soil degradation are currently major challenges to agriculture in the region. These problems may be exacerbated in the future if global climate change projections are realized. Many studies have considered strategies for improving agricultural management, based on the optimization of crop management decisions. Climate change analyses could be further strengthened by economic studies that integrate the potential use of natural resources across sectors.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: A critical omission from climate change impact studies on crop yield is the interaction between soil organic carbon (SOC), nitrogen (N) availability, and carbon dioxide (CO2). We used a multimodel ensemble to predict the effects of SOC and N under different scenarios of temperatures and CO2 concentrations on maize (Zea mays L.) and wheat (Triticum aestivum L.) yield in eight sites across the world. We found that including feedbacks from SOC and N losses due to increased temperatures would reduce yields by 13% in wheat and 19% in maize for a 3C rise temperature with no adaptation practices. These losses correspond to an additional 4.5% (+3C) when compared to crop yield reductions attributed to temperature increase alone. Future CO2 increase to 540 ppm would partially compensate losses by 80% for both maize and wheat at +3C, and by 35% for wheat and 20% for maize at +6C, relative to the baseline CO2 scenario.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN60415 , Agricultural & Environmental Letters (e-ISSN 2471-9625); 3; 1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...