ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Keywords
Publisher
Years
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: van der Jagt, Helga; Friese, Carmen A; Stuut, Jan-Berend W; Fischer, Gerhard; Iversen, Morten Hvitfeldt (2018): The ballasting effect of Saharan dust deposition on aggregate dynamics and carbon export: Aggregation, settling, and scavenging potential of marine snow. Limnology and Oceanography, 63(3), 1386-1394, https://doi.org/10.1002/lno.10779
    Publication Date: 2023-03-16
    Description: Lithogenic material such as Saharan dust can be incorporated into organic aggregates and act as ballast, potentially enhancing the marine carbon export via increased sinking velocities of aggregates. We studied the ballasting effects of Saharan dust on the aggregate dynamics in the upwelling region off Cape Blanc (Mauritania). Aggregate formation from a natural plankton community exposed to Saharan dust deposition resulted in higher abundance of aggregates with higher sinking velocities compared to aggregate formation with low dust. This higher aggregate abundance and sinking velocities potentially increased the carbon export 10-fold when the aggregates were ballasted by Saharan dust. After aggregate formation in the surface waters, subsequent sinking through suspended Saharan dust minerals had no influence on aggregate sizes, abundance, and sinking velocities. We found that aggregates formed in the surface ocean off Mauritania were already heavily ballasted with lithogenic material and could therefore not scavenge any additional minerals during their descent. This suggests that carbon export to the deep ocean in regions with high dust deposition is strongly controlled by dust input to the surface ocean while suspended dust particles in deeper water layers do not significantly interact with sinking aggregates.
    Keywords: Center for Marine Environmental Sciences; MARUM; SeaPump; Seasonal and regional food web interactions with the biological pump
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-03-03
    Keywords: Calcium carbonate, flux; Carbon, organic, flux; CB-24; Center for Marine Environmental Sciences; Date/time end; Date/time start; DEPTH, water; Duration, number of days; Lithogenic, flux; MARUM; Mass; MOOR; Mooring; Nitrogen, total, flux; Opal, flux; Organic matter, flux; Sample code/label; Split; Total mass, flux per day
    Type: Dataset
    Format: text/tab-separated-values, 234 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-03-03
    Keywords: Center for Marine Environmental Sciences; DUC; Dust collector; Flux of total mass; Iwik-14; MARUM; Mass per volume; Sample code/label
    Type: Dataset
    Format: text/tab-separated-values, 30 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-03-03
    Keywords: Center for Marine Environmental Sciences; DUC; Dust collector; Flux of total mass; Iwik-13; MARUM; Mass per volume; Mauretania, Africa; Sample code/label
    Type: Dataset
    Format: text/tab-separated-values, 30 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-03-03
    Keywords: Center for Marine Environmental Sciences; DATE/TIME; Iwik; MARUM; Mauretania, Africa; Weather station/meteorological observation; Wind direction; Wind direction description; Wind speed; WST
    Type: Dataset
    Format: text/tab-separated-values, 45383 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-03-03
    Keywords: Arkeiss; Center for Marine Environmental Sciences; DATE/TIME; MARUM; Precipitation; Weather station/meteorological observation; WST
    Type: Dataset
    Format: text/tab-separated-values, 462 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-03-03
    Keywords: Carmen_; Center for Marine Environmental Sciences; DATE/TIME; MARUM; Precipitation; Weather station/meteorological observation; Wind direction; Wind speed; WST
    Type: Dataset
    Format: text/tab-separated-values, 11917 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-03-03
    Keywords: Beckman Coulter Laser diffraction particle size analyzer LS 13 320; CB-24; Center for Marine Environmental Sciences; DEPTH, water; MARUM; MOOR; Mooring; Sample code/label; Size fraction 0.412-0.375 µm; Size fraction 0.452-0.412 µm; Size fraction 0.496-0.452 µm; Size fraction 0.545-0.496 µm; Size fraction 0.598-0.545 µm; Size fraction 0.657-0.598 µm; Size fraction 0.721-0.657 µm; Size fraction 0.791-0.721 µm; Size fraction 0.869-0.791 µm; Size fraction 0.953-0.869 µm; Size fraction 1.047-0.954 µm; Size fraction 1.149-1.047 µm; Size fraction 1.261-1.149 µm; Size fraction 1.385-1.261 µm; Size fraction 1.520-1.385 µm; Size fraction 1.669-1.520 µm; Size fraction 1.832-1.669 µm; Size fraction 10.78-9.819 µm; Size fraction 101.1-92.1 µm; Size fraction 1041-948.3 µm; Size fraction 11.83-10.78 µm; Size fraction 111-101.1 µm; Size fraction 1143-1041 µm; Size fraction 12.99-11.83 µm; Size fraction 121.8-111 µm; Size fraction 1255-1143 µm; Size fraction 133.7-121.8 µm; Size fraction 1377-1255 µm; Size fraction 14.26-12.99 µm; Size fraction 146.8-133.7 µm; Size fraction 15.65-14.26 µm; Size fraction 1512-1377 µm; Size fraction 161.2-146.8 µm; Size fraction 1660-1512 µm; Size fraction 17.18-15.65 µm; Size fraction 176.9-161.2 µm; Size fraction 18.86-17.18 µm; Size fraction 1822-1660 µm; Size fraction 194.2-176.9 µm; Size fraction 2.000-1.822 mm; Size fraction 2.010-1.832 µm; Size fraction 2.208-2.011 µm; Size fraction 2.423-2.208 µm; Size fraction 2.66-2.423 µm; Size fraction 2.92-2.66 µm; Size fraction 20.70-18.86 µm; Size fraction 213.2-194.2 µm; Size fraction 22.73-20.70 µm; Size fraction 234.1-213.2 µm; Size fraction 24.95-22.73 µm; Size fraction 256.9-234.1 µm; Size fraction 27.38-24.95 µm; Size fraction 282.1-256.9 µm; Size fraction 3.206-2.920 µm; Size fraction 3.519-3.206 µm; Size fraction 3.862-3.519 µm; Size fraction 30.07-27.38 µm; Size fraction 309.6-282.1 µm; Size fraction 33.01-30.07 µm; Size fraction 339.9-309.6 µm; Size fraction 36.24-33.01 µm; Size fraction 373.1-339.9 µm; Size fraction 39.77-36.24 µm; Size fraction 4.241-3.862 µm; Size fraction 4.656-4.241 µm; Size fraction 409.6-373.1 µm; Size fraction 43.67-39.78 µm; Size fraction 449.7-409.6 µm; Size fraction 47.94-43.67 µm; Size fraction 493.6-449.7 µm; Size fraction 5.111-4.656 µm; Size fraction 5.611-5.111 µm; Size fraction 52.63-47.94 µm; Size fraction 541.9-493.6 µm; Size fraction 57.77-52.63 µm; Size fraction 594.9-541.9 µm; Size fraction 6.159-5.611 µm; Size fraction 6.761-6.159 µm; Size fraction 63.42-57.77 µm; Size fraction 653.0-594.9 µm; Size fraction 69.62-63.42 µm; Size fraction 7.421-6.761 µm; Size fraction 716.9-653.0 µm; Size fraction 76.43-69.62 µm; Size fraction 786.9-716.9 µm; Size fraction 8.148-7.422 µm; Size fraction 8.944-8.147 µm; Size fraction 83.90-76.43 µm; Size fraction 863.9-786.9 µm; Size fraction 9.819-8.944 µm; Size fraction 92.1-83.9 µm; Size fraction 948.2-863.9 µm
    Type: Dataset
    Format: text/tab-separated-values, 1302 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Friese, Carmen A; van Hateren, Johannes Albert; Vogt, Christoph; Fischer, Gerhard; Stuut, Jan-Berend W (2017): Seasonal provenance changes in present-day Saharan dust collected in and off Mauritania. Atmospheric Chemistry and Physics, 17(16), 10163-10193, https://doi.org/10.5194/acp-2017-131
    Publication Date: 2023-10-25
    Description: Saharan dust has a crucial influence on the earth climate system and its emission, transport and deposition are intimately related to, e.g., wind speed, precipitation, temperature and vegetation cover. The alteration in the physical and chemical properties of Saharan dust due to environmental changes is often used to reconstruct the climate of the past. However, to better interpret possible climate changes the dust source regions need to be known. By analysing the mineralogical composition of transported or deposited dust, potential dust source areas can be inferred. Summer dust transport off northwest Africa occurs in the Saharan air layer (SAL). In continental dust source areas, dust is also transported in the SAL; however, the predominant dust input occurs from nearby dust sources with the low-level trade winds. Hence, the source regions and related mineralogical tracers differ with season and sampling location. To test this, dust collected in traps onshore and in oceanic sediment traps off Mauritania during 2013 to 2015 was analysed. Meteorological data, particle-size distributions, back-trajectory and mineralogical analyses were compared to derive the dust provenance and dispersal. For the onshore dust samples, the source regions varied according to the seasonal changes in trade-wind direction. Gibbsite and dolomite indicated a Western Saharan and local source during summer, while chlorite, serpentine and rutile indicated a source in Mauritania and Mali during winter. In contrast, for the samples that were collected offshore, dust sources varied according to the seasonal change in the dust transporting air layer. In summer, dust was transported in the SAL from Mauritania, Mali and Libya as indicated by ferroglaucophane and zeolite. In winter, dust was transported with the trades from Western Sahara as indicated by, e.g., fluellite.
    Keywords: Center for Marine Environmental Sciences; MARUM
    Type: Dataset
    Format: application/zip, 13 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-10-25
    Keywords: Beckman Coulter Laser diffraction particle size analyzer LS 13 320; CBi-11; Center for Marine Environmental Sciences; DEPTH, water; MARUM; MOOR; Mooring; Sample code/label; Size fraction 0.412-0.375 µm; Size fraction 0.452-0.412 µm; Size fraction 0.496-0.452 µm; Size fraction 0.545-0.496 µm; Size fraction 0.598-0.545 µm; Size fraction 0.657-0.598 µm; Size fraction 0.721-0.657 µm; Size fraction 0.791-0.721 µm; Size fraction 0.869-0.791 µm; Size fraction 0.953-0.869 µm; Size fraction 1.047-0.954 µm; Size fraction 1.149-1.047 µm; Size fraction 1.261-1.149 µm; Size fraction 1.385-1.261 µm; Size fraction 1.520-1.385 µm; Size fraction 1.669-1.520 µm; Size fraction 1.832-1.669 µm; Size fraction 10.78-9.819 µm; Size fraction 101.1-92.1 µm; Size fraction 1041-948.3 µm; Size fraction 11.83-10.78 µm; Size fraction 111-101.1 µm; Size fraction 1143-1041 µm; Size fraction 12.99-11.83 µm; Size fraction 121.8-111 µm; Size fraction 1255-1143 µm; Size fraction 133.7-121.8 µm; Size fraction 1377-1255 µm; Size fraction 14.26-12.99 µm; Size fraction 146.8-133.7 µm; Size fraction 15.65-14.26 µm; Size fraction 1512-1377 µm; Size fraction 161.2-146.8 µm; Size fraction 1660-1512 µm; Size fraction 17.18-15.65 µm; Size fraction 176.9-161.2 µm; Size fraction 18.86-17.18 µm; Size fraction 1822-1660 µm; Size fraction 194.2-176.9 µm; Size fraction 2.000-1.822 mm; Size fraction 2.010-1.832 µm; Size fraction 2.208-2.011 µm; Size fraction 2.423-2.208 µm; Size fraction 2.66-2.423 µm; Size fraction 2.92-2.66 µm; Size fraction 20.70-18.86 µm; Size fraction 213.2-194.2 µm; Size fraction 22.73-20.70 µm; Size fraction 234.1-213.2 µm; Size fraction 24.95-22.73 µm; Size fraction 256.9-234.1 µm; Size fraction 27.38-24.95 µm; Size fraction 282.1-256.9 µm; Size fraction 3.206-2.920 µm; Size fraction 3.519-3.206 µm; Size fraction 3.862-3.519 µm; Size fraction 30.07-27.38 µm; Size fraction 309.6-282.1 µm; Size fraction 33.01-30.07 µm; Size fraction 339.9-309.6 µm; Size fraction 36.24-33.01 µm; Size fraction 373.1-339.9 µm; Size fraction 39.77-36.24 µm; Size fraction 4.241-3.862 µm; Size fraction 4.656-4.241 µm; Size fraction 409.6-373.1 µm; Size fraction 43.67-39.78 µm; Size fraction 449.7-409.6 µm; Size fraction 47.94-43.67 µm; Size fraction 493.6-449.7 µm; Size fraction 5.111-4.656 µm; Size fraction 5.611-5.111 µm; Size fraction 52.63-47.94 µm; Size fraction 541.9-493.6 µm; Size fraction 57.77-52.63 µm; Size fraction 594.9-541.9 µm; Size fraction 6.159-5.611 µm; Size fraction 6.761-6.159 µm; Size fraction 63.42-57.77 µm; Size fraction 653.0-594.9 µm; Size fraction 69.62-63.42 µm; Size fraction 7.421-6.761 µm; Size fraction 716.9-653.0 µm; Size fraction 76.43-69.62 µm; Size fraction 786.9-716.9 µm; Size fraction 8.148-7.422 µm; Size fraction 8.944-8.147 µm; Size fraction 83.90-76.43 µm; Size fraction 863.9-786.9 µm; Size fraction 9.819-8.944 µm; Size fraction 92.1-83.9 µm; Size fraction 948.2-863.9 µm
    Type: Dataset
    Format: text/tab-separated-values, 1674 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...