ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Weathering  (4)
  • Age  (2)
  • Amazon river  (2)
Collection
Keywords
Years
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 8 (2007): Q06009, doi:10.1029/2006GC001544.
    Description: We quantitatively analyze the area-age distribution of sedimentary, extrusive volcanic, and endogenous (plutonic and/or metamorphic) bedrock on the basis of data from the most recent digital Geological Map of the World at a scale of 1:25,000,000. The spatial resolution of the digital bedrock data averages 13,905 km2 per polygon. Comparison of certain regions of the world, previously analyzed at higher spatial resolution, with the low-resolution world data reveals general consistency in the areal exposure of major rock types as well as a minor systematic bias toward older average bedrock ages in the global data set. Application of the global bedrock data to 19 large-scale drainage regions and three large, internally drained regions reveals considerable regional variability of Earth's bedrock geology that is consistent with the dominant geotectonic setting of the respective drainage region.
    Description: B.P.E. acknowledges financial support from the United States National Science Foundation (NSF-EAR- 0125873) and from the Woods Hole Oceanographic Institution.
    Keywords: Geologic map ; World ; Age ; Bedrock ; Sediment ; Volcanic rock
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2009. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Chemical Geology 268 (2009): 337-343, doi:10.1016/j.chemgeo.2009.09.013.
    Description: Analyses of Chilean river waters indicate that the average yield of unradiogenic Sr (~ 517 mol Sr km− 2 yr− 1, 87Sr/86Sr ~ 0.7057) from western South America (1,220,853 km2) into the southeastern Pacific Ocean is ~ 2–4 times higher than that from Iceland (~ 110 mol Sr km − 2 yr− 1, 87Sr/86Sr ~ 0.7025) and the Deccan traps, but lower than fluxes of unradiogenic Sr from ocean islands in the Lesser Antilles and Réunion. The Sr flux from western South America accounts for about 1.8% of the annual dissolved Sr delivered to the ocean via rivers. If Chilean rivers analyzed in this study accurately characterize runoff from western South America, active convergent continental margins release about as much unradiogenic Sr to seawater as a 0–1 Myr old mid-ocean ridge segment of equivalent length. Modulations of the flux of unradiogenic Sr from active margins over geologic time scales have to be considered as an additional driving force of change in the marine Sr isotope record, supplementing temporal variations in the submarine hydrothermal flux as a source of unradiogenic Sr to seawater. Such modulations can be driven by changes in the surface exposure of volcanic arc terrains, changes in climate, ocean currents and geographic latitude due to plate tectonics, as well as topographic changes that can affect local rainfall, runoff and erosion.
    Description: We acknowledge financial 302 support from NSF grant EAR-0519387, from WHOI’s Mary Sears Visitor Program, and thank the German DAAD for travel support for KF.
    Keywords: Strontium ; River ; Seawater ; Chile ; Andes ; Weathering
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2018. This is the author's version of the work. It is posted here under a nonexclusive, irrevocable, paid-up, worldwide license granted to WHOI. It is made available for personal use, not for redistribution. The definitive version was published in Earth and Planetary Science Letters 496 (2018): 168-177, doi:10.1016/j.epsl.2018.05.022.
    Description: The biogeochemical sulfur cycle is intimately linked to the cycles of carbon, iron, and oxygen, and plays an important role in global climate via weathering reactions and aerosols. However, many aspects of the modern budget of the global sulfur cycle are not fully understood. We present new δ34S measurements on sulfate from more than 160 river samples from different geographical and climatic regions—more than 46% of the world’s freshwater flux to the ocean is accounted for in this estimate of the global riverine sulfur isotope budget. These measurements include major rivers and their tributaries, as well as time series, and are combined with previously published data to estimate the modern flux-weighted global riverine δ34S as 4.4 ± 4.5 ‰ (V-CDT), and 4.8 ± 4.9 ‰ when the most polluted rivers are excluded. Combined with major anion and cation concentrations, the sulfur isotope data allow us to tease apart the relative contributions of different processes to the modern riverine sulfur budget, resulting in new estimates of the flux of riverine sulfate due to the oxidative weathering of pyrites (1.3 ± 0.2 Tmol S/y) and the weathering of sedimentary sulfate minerals (1.5 ± 0.2 Tmol S/y). These data indicate that previous estimates of the global oxidative weathering of pyrite have been too low by a factor of two. As pyrite oxidation coupled to carbonate weathering can act as a source of CO2 to the atmosphere, this global pyrite weathering budget implies that the global CO2 weathering sink is overestimated. Furthermore, the large range of sulfur isotope ratios in modern rivers indicates that secular changes in the lithologies exposed to weathering through time could play a major role in driving past variations in δ34S of seawater.
    Description: This research was funded by a Foster and Coco Stanback postdoctoral fellowship and a Marie Curie Career Integration Grant (CIG14-631752) to AB. JFA acknowledges the support of NSF-OCE grant 1340174 and NSF-EAR grant 1349858. WF acknowledges the support of a grant from the David and Lucile Packard Foundation.
    Keywords: Sulfur ; Rivers ; Weathering ; Pyrite
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Geophysical Union
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 8 (2007): Q05014, doi:10.1029/2006GC001505.
    Description: We quantitatively analyze the area-age distribution of sedimentary, igneous, metamorphic, and ultramafic bedrock on the basis of data from the digital geologic map of Brazil, published as a GIS map by the Brazilian Geological Survey. Bedrock units exclusively encompassing sedimentary rocks, igneous rocks, or metamorphic rocks cover 40.4%, 31.5%, and 17.7%, respectively, of the total bedrock area. These numbers have to be considered minimum estimates of the areal abundance of sedimentary, igneous, and metamorphic bedrock because polygons defined by mixed lithologies cover ~8.5–9.5% of the total bedrock area. These mixed units are sedimentary rocks with igneous and/or metamorphic contributions (1.4%), metamorphic rocks with sedimentary contributions (1.2%), metamorphic rocks with igneous contributions (1.5%), igneous rocks with sedimentary and/or metamorphic contributions (4.4%), and ultramafic units with sedimentary, igneous, and/or metamorphic contributions (~1–2%). The average ages of major lithologic units, weighted according to bedrock area, are as follows: sedimentary rocks (average stratigraphic age of 248 ± 5 [1σ] Myr; median stratigraphic age of 87.5 Myr), igneous rocks (1153 ± 13 [1σ] Myr), metamorphic rocks (1678 ± 30 [1σ] Myr), and ultramafic rocks (~1227 ± 25 [1σ] Myr). The average bedrock age of Brazil is 946 ± 7 [1σ] Myr. The range in lithologic composition and age structure of the various bedrock units reflects the complex tectonic makeup of Brazil that ranges from Neogene sedimentary cover in the Amazon Basin to Precambrian cratons (Guyana and Brazilian shields) and Transamazonian greenstone belts. The average spatial resolution of the data is 232 km2 polygon−1 and is sufficient to perform area-age analyses of individual river drainage basins larger than ~5,000 km2.
    Description: B.P.E. acknowledges financial support from the U.S. National Science Foundation (NSF-EAR-0125873) and the Woods Hole Oceanographic Institution.
    Keywords: Geologic map ; Brazil ; Age ; Bedrock ; Sediment
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 35(4), (2021): e2020GB006895, https://doi.org/10.1029/2020GB006895.
    Description: The Amazon River drains a diverse tropical landscape greater than 6 million km2, culminating in the world's largest export of freshwater and dissolved constituents to the ocean. Here, we present dissolved organic carbon (DOC), organic and inorganic nitrogen (DON, DIN), orthophosphate (PO43−), and major and trace ion concentrations and fluxes from the Amazon River using 26 samples collected over three annual hydrographs. Concentrations and fluxes were predominantly controlled by the annual wet season flood pulse. Average DOC, DON, DIN, and PO43− fluxes (±1 s.d.) were 25.5 (±1.0), 1.14 (±0.05), 0.82 (±0.03), and 0.063 (±0.003) Tg yr−1, respectively. Chromophoric dissolved organic matter absorption (at 350 nm) was strongly correlated with DOC concentrations, resulting in a flux of 74.8 × 106 m−2 yr−1. DOC and DON concentrations positively correlated with discharge while nitrate + nitrite concentrations negatively correlated, suggesting mobilization and dilution responses, respectively. Ammonium, PO43−, and silica concentrations displayed chemostatic responses to discharge. Major and trace ion concentrations displayed clockwise hysteresis (except for chloride, sodium, and rubidium) and exhibited either dilution or chemostatic responses. The sources of weathered cations also displayed seasonality, with the highest proportion of carbonate- and silicate-derived cations occurring during peak and baseflow, respectively. Finally, our seasonally resolved weathering model resulted in an average CO2 consumption yield of (3.55 ± 0.11) × 105 mol CO2 km−2 yr−1. These results represent an updated and temporally refined quantification of dissolved fluxes that highlight the strong seasonality of export from the world's largest river and set a robust baseline against which to gauge future change.
    Description: This work was supported by a grant from the Harbourton Foundation to R. G. M. Spencer and R. M. Holmes. T. W. Drake was supported by ETH Zurich core funding to J. Six. R. G. M. Spencer was additionally supported by NSF OCE-1333157.
    Description: 2021-09-15
    Keywords: Amazon river ; Dissolved organic carbon ; Fluxes ; Weathering ; Geochemistry
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-27
    Description: Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 35(6), (2021): e2021GB006938, https://doi.org/10.1029/2021GB006938.
    Description: As climate-driven El Niño Southern Oscillation (ENSO) events are projected to increase in frequency and severity, much attention has focused on impacts regarding ecosystem productivity and carbon balance in Amazonian rainforests, with comparatively little attention given to carbon dynamics in fluvial ecosystems. In this study, we compared the wet 2012 La Niña period to the following normal hydrologic period in the Amazon River. Elevated water flux during the La Niña period was accompanied by dilution of inorganic ion concentrations. Furthermore, the La Niña period exported 2.77 Tg C yr−1 more dissolved organic carbon (DOC) than the normal period, an increase greater than the annual amount of DOC exported by the Mississippi River. Using ultra-high-resolution mass spectrometry, we detected both intra- and interannual differences in dissolved organic matter (DOM) composition, revealing that DOM exported during the dry season and the normal period was more aliphatic, whereas compounds in the wet season and following the La Niña event were more aromatic, with ramifications for its environmental role. Furthermore, as this study has the highest temporal resolution DOM compositional data for the Amazon River to-date we showed that compounds were highly correlated to a 6-month lag in Pacific temperature and pressure anomalies, suggesting that ENSO events could impact DOM composition exported to the Atlantic Ocean. Therefore, as ENSO events increase in frequency and severity into the future it seems likely that there will be downstream consequences for the fate of Amazon Basin-derived DOM concurrent with lag periods as described here.
    Description: This work was partially supported by National Science Foundation grant OCE-1464396 to Robert G. M. Spencer and funding from the Harbourton Foundation to Robert G. M. Spencer, R. Max Holmes, and Bernhard Peucker-Ehrenbrink.
    Description: 2021-12-11
    Keywords: Amazon river ; carbon cycling ; dissolved organic carbon ; dissolved organic matter ; ENSO ; FT-ICR MS
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-11-04
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Voss, B., Eglinton, T., Peucker-Ehrenbrink, B., Galy, V., Lang, S., McIntyre, C., Spencer, R., Bulygina, E., Wang, Z., & Guay, K. Isotopic evidence for sources of dissolved carbon and the role of organic matter respiration in the Fraser River basin, Canada. Biogeochemistry. (2022), https://doi.org/10.1007/s10533-022-00945-5.
    Description: Sources of dissolved and particulate carbon to the Fraser River system vary significantly in space and time. Tributaries in the northern interior of the basin consistently deliver higher concentrations of dissolved organic carbon (DOC) to the main stem than other tributaries. Based on samples collected near the Fraser River mouth throughout 2013, the radiocarbon age of DOC exported from the Fraser River does not change significantly across seasons despite a spike in DOC concentration during the freshet, suggesting modulation of heterogeneous upstream chemical and isotopic signals during transit through the river basin. Dissolved inorganic carbon (DIC) concentrations are highest in the Rocky Mountain headwater region where carbonate weathering is evident, but also in tributaries with high DOC concentrations, suggesting that DOC respiration may be responsible for a significant portion of DIC in this basin. Using an isotope and major ion mass balance approach to constrain the contributions of carbonate and silicate weathering and DOC respiration, we estimate that up to 33 ± 11% of DIC is derived from DOC respiration in some parts of the Fraser River basin. Overall, these results indicate close coupling between the cycling of DOC and DIC, and that carbon is actively processed and transformed during transport through the river network.
    Description: Open Access funding provided by the MIT Libraries. This work was supported by the WHOI Academic Programs Office, the MIT EAPS Department Student Assistance Fund, and the PAOC Houghton Fund to BMV; NSF-ETBC grants OCE-0851015 to BPE, VG, and TIE and OCE-0851101 to RGMS; NSF grant EAR-1226818 to BPE; NSF grant OCE-0928582 to TIE and VG; and a WHOI Arctic Research Initiative grant to ZAW.
    Keywords: River ; Carbon isotopes ; Radiocarbon ; Weathering ; Carbon cycle
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...