ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    Journal of Biomedical Materials Research 42 (1998), S. 117-127 
    ISSN: 0021-9304
    Keywords: electrical stimulation ; cell attachment ; alkaline phosphatase ; osteopontin ; protein adsorption ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine , Technology
    Notes: Although surface charge has been shown to affect the adhesion and morphology of a variety of cell types, the interactions of bone marrow stromal cells with charged surfaces still remain unclear. A novel electrical stimulation system was used to investigate the interactions between rat bone marrow stromal cells and charged substrates in this study. A conductive and transparent indium tin oxide (ITO) coating was used as an electret substrate. Rat marrow stromal cells were cultured on positive, negative, and uncharged ITO surfaces. Cell attachment, morphology, alkaline phosphatase activity, and expression of osteopontin and collagen type III were assessed using histochemical staining, immunolabeling, and fluorescence microscopy. Voltages of 0.7, 0.8, 0.9, and 1.0 V applied to the substrates created surface potentials but were insufficient to decompose the media. On positively charged ITO, cell attachment was enhanced in serum-supplemented and serum-free media. Furthermore, decreases in cell spreading, alkaline phosphatase activity, and osteopontin were observed in cells grown on the positively charged ITO. These data indicate that positively charged surfaces enhance cell attachment but suppress cell spreading and differentiation of rat marrow stromal cells. © 1998 John Wiley & Sons, Inc. J. Biomed Mater Res, 42, 117-127, 1998.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: Using a high aspect ratio vessel (HARV), this study investigated the formation of 3-D rat marrow stromal cell culture on microcarriers and the expression of bone-related biochemical markers under conditions of simulated microgravity. In addition, it calculated the shear stresses imparted on the surface of microcarriers of different densities by the medium fluid in an HARV. Secondary rat marrow stromal cells were cultured on two types of microcarriers, Cytodex-3 beads and modified bioactive glass particles. Examination of cellular morphology by scanning electron microscopy revealed the presence of three-dimensional multicellular aggregates consisting of multiple cell-covered Cytodex-3 microcarriers bridged together. Mineralization was observed in the aggregates. Spherical cell-bead aggregates were observed in an HARV, while cell-bead assemblies were mostly loosely packed in a chain-like or branched structure in a cell bag. The expressions of alkaline phosphatase activity, collagen type I, and osteopontin were shown via the use of histochemical staining, immunolabeling, and confocal scanning electron microscopy. Using a numerical approach, it was found that at a given rotational speed and for a given culture medium, a larger density difference between the microcarrier and the culture medium (e.g., a modified bioactive glass particle) imparted a higher maximum shear stress on the microcarrier.
    Keywords: Aerospace Medicine
    Type: Tissue engineering (ISSN 1076-3279); 4; 1; 19-34
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...