ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Aerospace Medicine  (23)
  • Man/System Technology and Life Support  (6)
  • Life Sciences (General)  (2)
Collection
Keywords
  • 1
    Publication Date: 2011-08-24
    Description: INTRODUCTION: There is limited data about the long-term pulmonary effects of nitrox use in divers at shallow depths. This study examined changes in pulmonary function in a cohort of working divers breathing a 46% oxygen enriched mixture while diving at depths less than 12 m. METHODS: A total of 43 working divers from the Neutral Buoyancy Laboratory (NBL), NASA-Johnson Space Center completed a questionnaire providing information on diving history prior to NBL employment, diving history outside the NBL since employment, and smoking history. Cumulative dive hours were obtained from the NBL dive-time database. Medical records were reviewed to obtain the diver's height, weight, and pulmonary function measurements from initial pre-dive, first year and third year annual medical examinations. RESULTS: The initial forced vital capacity (FVC) and forced expiratory volume in 1 s (FEV1) were greater than predicted, 104% and 102%, respectively. After 3 yr of diving at the NBL, both the FVC and FEV1 showed a significant (p 〈 0.01) increase of 6.3% and 5.5%, respectively. There were no significant changes in peak expiratory flow (PEF), forced mid-expiratory flow rate (FEF(25-75%)), and forced expiratory flow rates at 25%, 50%, and 75% of FVC expired (FEF25%, FEF50%, FEF75%). Cumulative NBL dive hours was the only contributing variable found to be significantly associated with both FVC and FEV1 at 1 and 3 yr. CONCLUSIONS: NBL divers initially belong to a select group with larger than predicted lung volumes. Regular diving with nitrox at shallow depths over a 3-yr period did not impair pulmonary function. Improvements in FVC and FEV1 were primarily due to a training effect.
    Keywords: Life Sciences (General)
    Type: Aviation, space, and environmental medicine (ISSN 0095-6562); Volume 74; 7; 763-7
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-24
    Description: INTRODUCTION: Variables that define who we are, such as age, weight and fitness level influence the risk of decompression sickness (DCS) and venous gas emboli (VGE) from diving and aviation decompressions. We focus on age since astronauts that perform space walks are approximately 10 yr older than our test subjects. Our null hypothesis is that age is not statistically associated with the VGE outcomes from decompression to 4.3 psia. METHODS: Our data are from 7 different NASA tests where 188 men and 50 women performed light exercise at 4.3 psia for planned exposures no less than 4 h. Prebreathe (PB) time on 100% oxygen ranged from 150-270 min, including ascent time, with exercise of different intensity and length being performed during the PB in four of the seven tests with 150 min of PB. Subjects were monitored for VGE in the pulmonary artery using a Doppler ultrasound bubble detector for a 4-min period every 12 min. There were six design variables; the presence or absence of lower body adynamia and five PB variables; plus five concomitant variables on physical characteristics: age, weight height, body mass index, and gender that were available for logistic regression (LR). We used LR models for the probability of DCS and VGE, and multinomial logit (ML) models for the probability of Spencer VGE Grades 0-IV at exposure times of 61, 95, 131, 183 min, and for the entire exposure. RESULTS: Age was significantly associated with VGE in both the LR and ML models, so we reject the null hypothesis. Lower body adynamia was significant for all responses. CONCLUSIONS: Our selection of tests produced a wide range of the explanatory variables, but only age, lower body adynamia, height, and total PB time was helpful in various combinations to model the probability of DCS and VGE.
    Keywords: Aerospace Medicine
    Type: Aviation, space, and environmental medicine (ISSN 0095-6562); Volume 74; 11; 1142-50
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-12
    Description: The Risk of Decompression Sickness (DCS) is identified by the NASA Human Research Program (HRP) as a recognized risk to human health and performance in space, as defined in the HRP Program Requirements Document (PRD). This Evidence Report provides a summary of the evidence that has been used to identify and characterize this risk. Given that tissue inert gas partial pressure is often greater than ambient pressure during phases of a mission, primarily during extravehicular activity (EVA), there is a possibility that decompression sickness may occur.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-29896
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-17
    Description: The 165 exposures from four 2-hour protocols were analyzed for correlations or trends between decompression sickness (DCS) or venous gas emboli (VGE), and variables that affect risk in the subject and astronaut populations. The assumption in this global survey is that the distributions of gender, age, body mass index, etc., are equally represented in all four tested procedures. We used Student t-test for comparisons between means and chi-square test between comparisons of proportions with p〈0.05 defining a significant level. The type and distribution of the 19 cases of DCS were similar to historical cases. There was no correlation of age, gender, body mass index or fitness level with greater incidence of DCS or VGE. However increased age was associated with more Grade IV VGE in males. The duration and quantity of exercise during prebreathe is inversely related to risk of DCS and VGE. The latency time for VGE was longer (103 min +/- 56 SD, n = 15) when the ergometry was done approximately 15 min into the prebreathe than when done at the start of the prebreathe (53 min +/- 31, n = 13). The order of the ergometry did not influence the overall DCS and VGE incidence. We identified variables other than those of the prebreathe procedures that influence the DCS and VGE outcome. The analysis suggests that males over 40 years have a high incidence of Grade IV VGE.
    Keywords: Aerospace Medicine
    Type: May 14, 2000 - May 18, 2000; Houston, TX; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-18
    Description: Decompression sickness (DCS) is multivariable. But we hypothesize an aerobically fit person is less likely to experience hypobaric DCS than an unfit person given that fitness is exploited as part of the denitrogenation (prebreathe, PB) process prior to an altitude exposure. Aerobic fitness is peak oxygen uptake (VO2pk, ml/kg/min). METHODS: Treadmill or cycle protocols were used over 15 years to determine VO2pks. We evaluated dichotomous DCS outcome and venous gas emboli (VGE) outcome detected in the pulmonary artery with Doppler ultrasound associated with VO2pk for two classes of experiments: 1) those with no PB or PB under resting conditions prior to ascent in an altitude chamber, and 2) PB that included exercise for some part of the PB. There were 165 exposures (mean VO2pk 40.5 +/- 7.6 SD) with 25 cases of DCS in the first protocol class and 172 exposures (mean VO2pk 41.4 +/- 7.2 SD) with 25 cases of DCS in the second. Similar incidence of the DCS (15.2% vs. 14.5%) and VGE (45.5% vs. 44.8%) between the two classes indicates that decompression stress was similar. The strength of association between outcome and VO2pk was evaluated using univariate logistic regression. RESULTS: An inverse relationship between the DCS outcome and VO2pk was evident, but the relationship was strongest when exercise was done as part of the PB (exercise PB, coef. = -0.058, p = 0.07; rest or no PB, coef. = -0.005, p = 0.86). There was no relationship between VGE outcome and VO2pk (exercise PB, coef. = -0.003, p = 0.89; rest or no PB, coef. = 0.014, p = 0.50). CONCLUSIONS: A significant change in probability of DCS was associated with fitness only when exercise was included in the denitrogenation process. We believe a fit person that exercises during PB efficiently eliminates dissolved nitrogen from tissues.
    Keywords: Aerospace Medicine
    Type: Undersea and Hyperbaric Medical Society Annual Meeting; Jun 14, 2007 - Jun 16, 2007; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-10
    Description: Exercise PB can reduce the risk of decompression sickness on ascent to 4.3 psia when performed at the proper intensity and duration. Data are from seven tests. PB times ranged from 90 to 150 min. High intensity, short duration dual-cycle ergometry was done during the PB. This was done alone, or combined with intermittent low intensity exercise or periods of rest for the remaining PB. Nonambulating men and women performed light exercise from a semi-recumbent position at 4.3 psia for four hrs. The Research Model with age tested the probability that DCS increases with advancing age. The NASA Model with gender hypothesized that the probability of DCS increases if gender is female. Accounting for exercise and rest during PB with a variable half-time compartment for computed tissue N2 pressure advances our probability modeling of hypobaric DCS. Both models show that a small increase in exercise intensity during PB reduces the risk of DCS, and a larger increase in exercise intensity dramatically reduces risk. These models support the hypothesis that aerobic fitness is an important consideration for the risk of hypobaric DCS when exercise is performed during the PB.
    Keywords: Aerospace Medicine
    Type: NASA/TP-2004-213158 , S-952
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-08-13
    Description: Extravehicular activities (EVAs) at remote locations must maximize limited resources such as oxygen (O2) and also minimize the risk of decompression sickness (DCS). A proposed remote denitrogenation (prebreathe) protocol requires astronauts to live in a mildly hypoxic atmosphere at 8.2 psia while periodically performing EVAs at 4.3 psia. Empirical data are required to confirm that the protocol meets the current accept requirements: less than or equal to 15% incidence of Type I DCS, less than or equal to 20% incidence of Grade IV venous gas emboli (VGE), both at 95% statistical confidence, with no Type II DCS symptom during the validation trial. METHODS: A repeated measures statistical design is proposed in which groups of 6 subjects with physical characteristics similar to active-duty astronauts would first become equilibrated to an 8.2 psia atmosphere in a hypobaric chamber containing 34% O2 and 66% N2, over 48 h, and then perform 4 simulated EVAs at 4.3 psia over the next 9 days. In the equilibration phase, subjects undergo a 3-h 100% O2 mask prebreathe prior to and during a 5-min ascent to 8.2 psia to prevent significant tissue N2 supersaturation on reaching 8.2 psia. Masks would be removed once 34% O2 is established at 8.2 psia, and subjects would then equilibrate to this atmosphere for 48 h. The hypoxia is equivalent to breathing air at 1,220 meters (4,000 ft) altitude, just as was experienced in the shuttle 10.2 psia - 26.5% O2 staged denitrogenation protocol and the current ISS campout denitrogenation protocol. For simulated EVAs, each subject dons a mask and breathes 85% O2 and 15% N2 during a 3-min depressurization to 6.0 psia, holds for 15 min, and then completes a 3-min depressurization to 4.3 psia. The simulated EVA period starts when 6.0 psia is reached and continues for a total of 240 min (222 min at 4.3 psia). During this time, subjects will follow a prescribed repetitive activity against loads in the upper and lower body with mean metabolic rate approaching 1500 BTU/hr [378 kcal/hr (O2 consumption about 1.3 l(sub STPD)/min)] in ambulatory subjects. Noninvasive Doppler ultrasound bubble monitoring for VGE in the pulmonary artery will be performed on subjects by 2 Doppler Technicians at about 15 min intervals while at 4.3 psia. At the end of this period, a 15-min repressurization returns all subjects back to 8.2 psia and the cycle is repeated 3 additional times with a day of rest between simulated EVAs. RESULTS: With an assumed 1.5% probability of DCS [P(DCS)] and accounting for within-subject correlation, running the proposed study with 20 subjects has a 95% probability of meeting the accept criterion for DCS. But if the true probability of DCS is 3.0%, then 30 subjects would be needed to achieve about the same probability to meet our accept criterion. These results assume a standard deviation of 1.4 for the between-subjects random component of P(DCS) on a logit scale, which was estimated from a previous study.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-32084 , 2015 Human Research Program Investigators'' Workshop: Integrated Pathways to Mars; Jan 13, 2015 - Jan 15, 2015; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-10
    Description: In this paper we fit Cox proportional hazards models to a subset of data from the Hypobaric Decompression Sickness Databank. The data bank contains records on the time to decompression sickness (DCS) and venous gas emboli (VGE) for over 130,000 person-exposures to high altitude in chamber tests. The subset we use contains 1,321 records, with 87% censoring, and has the most recent experimental tests on DCS made available from Johnson Space Center. We build on previous analyses of this data set by considering more expanded models and more detailed model assessments specific to the Cox model. Our model - which is stratified on the quartiles of the final ambient pressure at altitude - includes the final ambient pressure at altitude as a nonlinear continuous predictor, the computed tissue partial pressure of nitrogen at altitude, and whether exercise was done at altitude. We conduct various assessments of our model, many of which are recently developed in the statistical literature, and conclude where the model needs improvement. We consider the addition of frailties to the stratified Cox model, but found that no significant gain was attained above a model that does not include frailties. Finally, we validate some of the models that we fit.
    Keywords: Aerospace Medicine
    Type: NASA/TP-2003-210791 , S-890 , NAS 1.60:210791
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-10
    Description: Decompression sickness (DCS) is a complex, multivariable problem. A mathematical description or model of the likelihood of DCS requires a large amount of quality research data, ideas on how to define a decompression dose using physical and physiological variables, and an appropriate analytical approach. It also requires a high-performance computer with specialized software. I have used published DCS data to develop my decompression doses, which are variants of equilibrium expressions for evolved gas plus other explanatory variables. My analytical approach is survival analysis, where the time of DCS occurrence is modeled. My conclusions can be applied to simple hypobaric decompressions - ascents lasting from 5 to 30 minutes - and, after minutes to hours, to denitrogenation (prebreathing). They are also applicable to long or short exposures, and can be used whether the sufferer of DCS is at rest or exercising at altitude. Ultimately I would like my models to be applied to astronauts to reduce the risk of DCS during spacewalks, as well as to future spaceflight crews on the Moon and Mars.
    Keywords: Man/System Technology and Life Support
    Type: NASA/TP-2001-210775 , S-885 , NAS 1.60:210775 , JSC-CN-7170
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-10-09
    Description: Suited vacuum chamber testing is critical to flight crew training, sustaining engineering, and development engineering. Most suited vacuum chamber testing at NASAs Johnson Space Center (JSC) involves crewmembers or human test subjects working at a hypobaric pressure of 4.3 psia, which requires that an oxygen prebreathe be performed prior to decompression to reduce the risk of decompression sickness (DCS). Since 1986, NASAs policy has been to require a 4-hour resting prebreathe for hypobaric chamber exposures of 4.2 psia lasting greater than 30 minutes. There have been no reports of Type II (i.e., serious, potentially life-threatening) DCS at NASA while using this prebreathe protocol. Several chamber runs, believed to be approximately 5% of all runs, are believed to have been terminated due to Type I DCS symptoms that were performance impairing; however, detailed records of DCS symptoms during suited vacuum chamber runs are not available. The adequacy of the 4-hour prebreathe protocol, as well as the processes by which prebreathe protocols and policies are established, became the subject of significant discussion in April 2018 when medical planning was initiated for chamber runs that were scheduled to occur later in 2018 that would last 8 hours or more with high metabolic rates.
    Keywords: Aerospace Medicine
    Type: NASA/TP-2019–220343 , JSC-E-DAA-TN72630
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...