ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Aerospace Medicine  (9)
  • LIFE SCIENCES (GENERAL)  (6)
  • 1
    Publication Date: 2011-08-24
    Description: Collection of saliva samples for the measurement of cortisol during space flights provides a simple technique for studying changes in adrenal function due microgravity. In the present work, several methods for preserving saliva cortisol at room temperature were investigated using radioimmunoassays for determining cortisol in saliva samples collected on a saliva-collection device called Salivettes. It was found that a pretreatment of Salivettes with citric acid resulted in preserving more than 85 percent of the salivary cortisol for as long as six weeks. The results correlated well with those for a sample stored in a freezer on an untreated Salivette.
    Keywords: LIFE SCIENCES (GENERAL)
    Type: Clinical Chemistry (ISSN 0009-9147); 38; 2, 19
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2004-12-03
    Description: Space flight produces a number of metabolic and physiological changes in the crewmembers exposed to microgravity. Following launch, body fluid volumes, electrolyte levels, and bone and muscle undergo changes as the human body adapts to the weightless environment. Changes in the urinary chemical composition may lead to the potentially serious consequences of renal stone formation. Previous data collected immediately after space flight indicate changes in the urine chemistry favoring an increased risk of calcium oxalate and uric acid stone formation (n = 323). During short term Shuttle space flights, the changes observed include increased urinary calcium and decreased urine volume, pH and citrate resulting in a greater risk for calcium oxalate and brushite stone formation (n = 6). Results from long duration Shuttle/Mir missions (n = 9) followed a similar trend and demonstrated decreased fluid intake and urine volume and increased urinary calcium resulting in a urinary environment saturated with the calcium stone-forming salts. The increased risk occurs rapidly upon exposure to microgravity, continues throughout the space flight and following landing. Dietary factors, especially fluid intake, or pharmacologic intervention can significantly influence the urinary chemical composition. Increasing fluid intake to produce a daily urine output of 2 liters/day may allow the excess salts in the urine to remain in solution, crystals formation will not occur and a renal stone will not develop. Results from long duration crewmembers (n = 2) who had urine volumes greater than 2.5 L/day minimized their risk of renal stone formation. Also, comparisons of stone-forming risk in short duration crewmembers clearly identified greater risk in those who produced less than 2 liters of urine/day. However, hydration and increased urine output does not correct the underlying calcium excretion due to bone loss and only treats the symptoms and not the cause of the increased urinary salts. Dietary modification and promising pharmacologic treatments may also be used to reduce the potential risk for renal stone formation. Potassium citrate is being used clinically to increase the urinary inhibitor levels to minimize the development of crystals and the growth of renal stones. Bisphosphonates are a class of drugs recently shown to help in patients with osteoporosis by inhibiting the loss of bones in elderly patients. This drug could potentially prevent the bone loss observed in astronauts and thereby minimize the increase in urinary calcium and reduce the risk for renal stone development. Results of NASA's renal stone risk assessment program clearly indicate that exposure to microgravity changes the urinary chemical environment such that there is an increased risk for supersaturation of stone-forming salts, including calcium oxalaie and brushite. These studies have indicated specific avenues for development of countermeasures for the increased renal stone risk observed during and following space flight. Increased hydration and implementation of pharmacologic countermeasures should largely mitigate the in-flight risk of renal stones.
    Keywords: Aerospace Medicine
    Type: Proceedings of the First Biennial Space Biomedical Investigators' Workshop; 242
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-06-28
    Description: The present invention provides an apparatus for separating a relatively large volume of blood into cellular and acellular fractions without the need for centrifugation. The apparatus comprises a housing divided by a fibrous filter into a blood sample collection chamber having a volume of at least about 1 milliliter and a serum sample collection chamber. The fibrous filter has a pore size of less than about 3 microns, and is coated with a mixture of mannitol and plasma fraction protein (or an animal or vegetable equivalent thereof). The coating causes the cellular fraction to be trapped by the small pores, leaving the cellular fraction intact on the fibrous filter while the acellular fraction passes through the filter for collection in unaltered form from the serum sample collection chamber.
    Keywords: Aerospace Medicine
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-06-28
    Description: The metabolic and environmental factors influencing renal stone formation before, during, and after Space Shuttle flights were assessed. We established the contributing roles of dietary factors in relationship to the urinary risk factors associated with renal stone formation. 24-hr urine samples were collected prior to, during space flight, and following landing. Urinary factors associated with renal stone formation were analyzed and the relative urinary supersaturation ratios of calcium oxalate, calcium phosphate (brushite), sodium urate, struvite and uric acid were calculated. Food and fluid consumption was recorded for a 48-hr period ending with the urine collection. Urinary composition changed during flight to favor the crystallization of stone-forming salts. Factors that contributed to increased potential for stone formation during space flight were significant reductions in urinary pH and increases in urinary calcium. Urinary output and citrate, a potent inhibitor of calcium-containing stones, were slightly reduced during space flight. Dietary intakes were significantly reduced for a number of variables, including fluid, energy, protein, potassium, phosphorus and magnesium. This is the first in-flight characterization of the renal stone forming potential in astronauts. With the examination of urinary components and nutritional factors, it was possible to determine the factors that contributed to increased risk or protected from risk. In spite of the protective components, the negative contributions to renal stone risk predominated and resulted in a urinary environment that favored the supersaturation of stone-forming salts. The importance of the hypercalciuria was noted since renal excretion was high relative to the intake.
    Keywords: Aerospace Medicine
    Type: NASA-TM-111752 , NAS 1.15:111752 , Journal of Urology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-06-02
    Description: Spaceflight causes adaptive changes in cardiovascular function that may deleteriously affect crew health and safety. Over the last three decades, symptoms of cardiovascular changes have ranged from postflight orthostatic tachycardia and decreased exercise capacity to serious cardiac rhythm disturbances during extravehicular activities (EVA). The most documented symptom of cardiovascular dysfunction, postflight orthostatic intolerance, has affected a significant percentage of U.S. Space Shuttle astronauts. Problems of cardiovascular dysfunction associated with spaceflight are a concern to NASA. This has been particularly true during Shuttle flights where the primary concern is the crew's physical health, including the pilot's ability to land the Orbiter, and the crew's ability to quickly egress and move to safety should a dangerous condition arise. The study of astronauts during Shuttle activities is inherently more difficult than most human research. Consequently, sample sizes have been small and results have lacked consistency. Before the Extended Duration Orbiter Medical Project (EDOMP), there was a lack of normative data on changes in cardiovascular parameters during and after spaceflight. The EDOMP for the first time allowed studies on a large enough number of subjects to overcome some of these problems. There were three primary goals of the Cardiovascular EDOMP studies. The first was to establish, through descriptive studies, a normative data base of cardiovascular changes attributable to spaceflight. The second goal was to determine mechanisms of cardiovascular changes resulting from spaceflight (particularly orthostatic hypotension and cardiac rhythm disturbances). The third was to evaluate possible countermeasures. The Cardiovascular EDOMP studies involved parallel descriptive, mechanistic, and countermeasure evaluations.
    Keywords: Aerospace Medicine
    Type: Extended Duration Orbiter Medical Project; 1-1 - 1-19; NASA/SP-1999-534
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-06-02
    Description: As noted elsewhere in this report, a central goal of the Extended Duration Orbiter Medical Project (EDOMP) was to ensure that cardiovascular and muscle function were adequate to perform an emergency egress after 16 days of spaceflight. The goals of the Regulatory Physiology component of the EDOMP were to identify and subsequently ameliorate those biochemical and nutritional factors that deplete physiological reserves or increase risk for disease, and to facilitate the development of effective muscle, exercise, and cardiovascular countermeasures. The component investigations designed to meet these goals focused on biochemical and physiological aspects of nutrition and metabolism, the risk of renal (kidney) stone formation, gastrointestinal function, and sleep in space. Investigations involved both ground-based protocols to validate proposed methods and flight studies to test those methods. Two hardware tests were also completed.
    Keywords: Aerospace Medicine
    Type: Extended Duration Orbiter Medical Project; 2-1 - 2-10; NASA/SP-1999-534
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: The transition to microgravity eliminates the hydrostatic gradients in the vascular system. The resulting fluid redistribution commonly manifests as facial edema, engorgement of the external neck veins, and a decrease in leg diameter. This experiment examined the responses to modified Valsalva and Mueller maneuvers measured by cardiac and vascular ultrasound (ECHO) in a baseline steady state and during preload reduction introduced with thigh occlusion cuffs used as a counter-measure device (Braslet cuffs) measured by cardiac and vascular ultrasound examinations. Methods: Nine International Space Station crewmember subjects (Expeditions 16 - 20) were examined in 15 experiment sessions 101 +/- 46.days after launch (mean +/- SD; 33 - 185). Twenty Seven cardiac and vascular parameters were obtained with/without respiratory maneuvers before and after tightening of the Braslet cuffs. Results: Non-physicians performed diagnostic-quality cardiac and vascular ultrasound examinations using remote guidance. Three of 27 combinations of maneuvers and Braslet or Braslet alone were identified as being significant changed when compared to baseline. Eleven of 81 differences between combinations of Mueller, Valsalva or baseline were significant and related to cardiac preload reduction or increase in lower extremity venous volume. Conclusions: Acute application of Braslet occlusion cuffs causes lower extremity fluid sequestration and exerts commensurate measurable effects on cardiac performance in microgravity. Ultrasound techniques to measure the hemodynamic effects of thigh cuffs in combination with respiratory maneuvers may serve as an invaluable tool in determining the volume status of the cardiac patient at the 'microgravity bedside'.
    Keywords: Aerospace Medicine
    Type: JSC-CN-23468 , 18th IAA Humans in Space Symposium; Apr 11, 2011 - Apr 15, 2011; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: The IP3 level in HeLa cells has been elevated through the application in hypergravity in a time-dependent manner. The data obtained for the hydrolytic products of PIP2, IP3, and DG are noted to modulate c-myc gene expression. It is also established that the cAMP accumulation by the IBMX in hypergravity-exposed cells was suppressed relative to the control. In light of IP3 increase and cAMP decrease results, a single GTP-binding protein may play a role in the hypergravity signal transduction of HeLa cells by stimulating PLC while inhibiting adenylate cyclase.
    Keywords: LIFE SCIENCES (GENERAL)
    Type: International Symposium on Space Technology and Science; May 20, 1990 - May 25, 1990; Tokyo; Japan
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-08-28
    Description: It is shown that hypergravity (35g) stimulates the production of inositol 1,4,5-trisphosphate (IP3) and decreases adenosine 3-prime,5-prime-cyclic monophosphate (cAMP) levels in HeLa cells. It is proposed that IP3 and cAMP may act as second messengers in hypergravity signal transduction. Phosphorylation of microtubule-associated proteins in both the detergent-soluble and -insoluble fractions suggests that cytoskeletal structures may be influenced by gravity.
    Keywords: LIFE SCIENCES (GENERAL)
    Type: Experimental Cell Research (ISSN 0014-4827); 192; 492-496
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-08-28
    Description: In view of the suggestions by Chabrier et al. (1987) and Steardo and Nathanson (1987) that atrial natriuretic peptide (ANP) may play a role in the fluid homeostasis of the brain, the ANP receptors in primary cultures of bovine brain microvessel endothelian cells were quantitated and characterized. Results of partition binding studies and the effect of cGMP additions indicated the presence of at least two types of ANP receptors, with the majority of the receptors being the nonguanylate cyclase coupled receptors. The presence of at least two ANP receptor types suggests an active role for ANP in regulating brain endothelial cell function.
    Keywords: LIFE SCIENCES (GENERAL)
    Type: Journal of Cellular Physiology (ISSN 0021-9541); 146; 43-51
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...