ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Aerospace Medicine  (6)
  • Aerospace Medicine; Life Sciences (General)  (1)
  • 1
    Publication Date: 2019-07-13
    Description: Microgravity and ionizing radiation in the spaceflight environment poses multiple challenges to homeostasis and may contribute to cellular stress. Effects may include increased generation of reactive oxygen species (ROS), DNA damage and repair error, cell cycle arrest, cell senescence or death. Our central hypothesis is that prolonged exposure to the spaceflight environment leads to the excess production of ROS and oxidative damage, culminating in accelerated tissue degeneration. The main goal of this project is to determine the importance of cellular redox defense for physiological adaptations and tissue degeneration in the space environment.
    Keywords: Aerospace Medicine; Life Sciences (General)
    Type: ARC-E-DAA-TN48022 , Annual Meeting, American Society for Gravitational and Space Research (ASGSR 2017); Oct 25, 2017 - Oct 28, 2017; Seattle, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: Damaging effects due to spaceflight and long-duration weightlessness are seen in the musculoskeletal system, specifically with regards to bone loss, bone resorption, and changes in overall bone structure. These adverse effects are all seen with indicators of oxidative stress and a variation in the levels of oxidative gene expression. Once gravity is restored, however, the recovery is slow and incomplete. Despite this, few reports have investigated the correlation between oxidative damage and general modifications within the bone. In this project, we will make use of a ground-based model of simulated weightlessness (hindlimb unloading, HU) in order to observe skeletal changes in response to induced microgravity due to changes in oxidative pressures. With this model we will analyze samples at 14-day and 90-day time points following HU for the determination of acute and chronic effects, each with corresponding controls. We hypothesize that simulated microgravity will lead to skeletal adaptations including time-dependent activation of pro-oxidative processes and pro-osteoclastogenic signals related to the progression, plateau, and recovery of the bone. Microcomputed tomography techniques will be utilized to measure skeletal changes in response to HU. With the results of this study, we hope to further the understanding of skeletal affects as a result of long-duration weightlessness and develop countermeasures to combat bone loss in spaceflight and osteoporosis on Earth.
    Keywords: Aerospace Medicine
    Type: ARC-E-DAA-TN48023 , American Society for Gravitational and Space Research (ASGSR); Oct 25, 2017 - Oct 28, 2017; Seattle, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: As humans venture further into space and beyond low Earth orbit, space radiation is one of the main challenges for astronauts' health. Radiation-induced bone loss is a potential health problem for long duration habitation in space. We showed that a dietary countermeasure prevents bone loss in mice exposed to total body irradiation (TBI). We used a range of ionizing radiation, gamma (137Cs), proton (1H), iron (56Fe), and a combination of sequential proton and iron beam (1H/56Fe/1H) to evaluate skeletal responses. These TBI cover a range of linear energy transfer (LET), from low-LET such as proton, to high-LET such as 56Fe (HZE: high Z- high energy) at doses between 1-2 Gy. The countermeasure diet, composed of 25% Dried Plum (DP) was effective at preventing radiation-induced cancellous bone loss in appendicular bone (tibia). Furthermore, exposing mice to HZE radiation, such as 56Fe (1Gy), impaired ex vivo growth of marrow-derived, bone-forming osteoblasts, which led to reduced mineralization capacity (-77%). In contrast, mice fed the DP diet did not display these deficits, showing the diet's capacity to protect marrow-derived osteoprogenitors. Dietary DP prevented the increase of bone resorbing osteoclast cells, inflammation and oxidative stress, while protecting the osteoprogenitors and mesenchymal stem cells, which few drugs against osteoporosis may achieve. Spaceflight is a combination of multiple factors including microgravity, in addition to space radiation. Therefore, we conducted additional studies to determine if the DP diet could prevent simulated spaceflight (simulated microgravity and radiation combined) bone loss. Mice were exposed to gamma (TBI, 137Cs, 2 Gy), simulated microgravity (using the hindlimb unloading system, HU) or TBI+HU. While we observed bone loss in mice fed the control diet (CD) due to both treatments (TBI=14%, HU=20%), and a worse effect with combined treatments (TBI+HU=25%), mice fed the DP diet did not sustain significant bone loss relative to untreated controls. The DP diet prevented microarchitectural decrements in both appendicular bone (tibia) and axial bone (vertebrae). In addition, the DP diet mitigated HU-induced deficits in osteoblastogenesis. Interestingly, lower doses of DP diet (5%, 10%) did not appear to prevent cancellous bone loss, which shows the importance of identifying the active component(s) of DP. Finally, we have preliminary data showing the potential of DP to prevent radiation-induced damage at a systematic level.. In summary, this novel dietary countermeasure is a promising candidate nutritional countermeasure for spaceflight-induced bone loss and tissue damage.
    Keywords: Aerospace Medicine
    Type: ARC-E-DAA-TN52558 , COSPAR (Committee on Space Research) Scientific Assembly; Jul 14, 2018 - Jul 22, 2018; Pasadena, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-08-13
    Description: Short-term and long-term spaceflight missions can cause immune system dysfunction in astronauts. Recent studies indicate elevated white blood cells (WBC) and polymorphonuclear neutrophils (PMN) in astronaut blood, along with unchanged or reduced lymphocyte counts, and reduced T cell function, during short-(days) and long-(months) term spaceflight. A high PMN to lymphocyte ratio (NLR) can acts as a strong predictor of poor prognosis in cancer, and as a biomarker for subclinical inflammation in humans and chronic stress in mouse models, however, the NLR has not yet been identified as a predictor of astronaut health during spaceflight. For this, complete blood cell count data collected from astronauts and rodents that have flown for short- and long-term missions on board the International Space Station (ISS) was repurposed to determine the NLR pre-, in-, and post-flight. The results displayed that the NLR progressively increased during spaceflight in both human and mice, while a spike in the NLR was observed at post-flight landing, suggesting stress-induced factors may be involved. In addition, the ground-based chronic microgravity analog, hindlimb unloading in mice, indicated an increased NLR, along with induced myeloperoxidase expression, as measured by quantitative (q)PCR. The mechanism for increased NLR was further assessed in vitro using the NASA-developed rotating wall vessel (RWV) cell culture suspension system with human WBCs. The results indicated that simulated microgravity led to increased mature PMN counts, NLR profiles, and production of reactive oxygen species (ROS). Collectively, these studies show that an increased NLR is observed in spaceflight missions, and in chronic microgravity-analog simulation in mice, and that this effect may be potentiated by the oxidative stress response in blood cells under microgravity conditions. Furthermore, these results suggest that a disrupted NLR profile in spaceflight may further disrupt immune homeostasis, potentially causing chronic immune-mediated inflammatory diseases. Thus, we propose that the health status of astronauts during short- and long-term space missions can be monitored by their NLR profile, in addition to utilizing this measurement as a tool for interventions and countermeasure development to restore homeostatic immunity.
    Keywords: Aerospace Medicine
    Type: ARC-E-DAA-TN62853 , ARC-E-DAA-TN62678 , ASGSR 2018; Oct 31, 2018 - Nov 03, 2018; Rockville, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-08-13
    Description: Long duration spaceflight causes a negative calcium balance and reduces bone density in astronauts. The potential for exposure to space radiation to contribute to lasting decrements in bone mass is not yet understood. Sustained changes to bone mass have a relatively long latency for development, however skin is a radiation sensitive organ and changes in skin gene expression may serve as an early radiation biomarker of exposures and may correlate with adverse effects on skeletal tissue. Previous studies have shown that FGF18 gene expression levels of hair follicles collected from astronauts on the ISS rose over time. In the hair follicle, FGF18 signaling mediates radioresistance in the telogen by arresting the cell cycle, and FGF18 has the potential to function as a radioprotector. In bone, FGF18 appears to regulate cell proliferation and differentiation positively during osteogenesis and negatively during chondrogenesis. Cellular defense responses to radiation are shared by a variety of organs, hence in this study, we examined whether radiation induced gene expression changes in skin may be predictive of the responses of skeletal tissue to radiation exposure. We have examined oxidative stress and growth arrest pathways in mouse skin and long bones by measuring gene expression levels via quantitative polymerase chain reaction (qPCR) after exposure to total body irradiation (TBI). To investigate the effects of irradiation on gene expression, we used skin and femora (cortical shaft) from the following treatment groups: control (normally loaded, sham-irradiated), and TBI (0.5 Gy Fe-56 600 MeV/n and 0.5 Gy H-1 150 MeV/n). Animals were euthanized one and 11 days post-IR. Statistical analysis was performed via a Student's ttest. In skin samples one day after IR, skin expression of FGF18 was significantly greater (3.8X) than sham-irradiated controls (3.8X), but did not differ 11 days post TBI. Expression levels of other radiation related genes (Nfe2l2, Trp53, Cdkn1a, FoxO3, Gadd45g, SOD1), was not different due to TBI at either time point. In bone (femora) TBI significantly increased (3.8X) expression of the pro-bone resorption cytokine, MCP-1, one day after TBI. FGF18 expression in skin and MCP- 1 expression in bone were found to be positively correlated (P less than 0.002, r=0.8779). Further, microcomputed tomography analysis of tibae from these animals showed reduced fractional cancellous bone volume (-21.7%) at 11 days post exposure. These results suggest that early radiation induced changes in FGF18 gene expression in skin may have value for predicting subsequent loss of cancellous bone mass.
    Keywords: Aerospace Medicine
    Type: ARC-E-DAA-TN38896 , ARC-E-DAA-TN37172 , 2017 NASA Human Research Program Investigators' Workshop (HRP IWS 2017); Jan 23, 2017 - Jan 26, 2017; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-08-14
    Description: Space radiation is one of the challenges for long-term spaceflight, especially for missions beyond low Earth Orbit. We have shown that a diet composed of 25% dried plum (DP) prevents radiation-induced bone loss. The DP diet fully protected the cancellous bone microarchitecture of mice exposed to ionizing radiation (gamma, proton, and HZE). In particular relevant to space radiation, we showed that the DP diet prevents bone loss due to 1Gy of sequential exposure of proton (1H, low linear energy transfer -LET-), and 1Gy of iron (56Fe, high-LET). In addition, total body exposure to 1Gy of HZE radiation (56Fe) impaired the osteoprogenitors in mice fed the control diet, as indicated by decreased osteoblast mineralization. In contrast, marrow stem cells from mice fed the DP did not exhibit these deficits. Based on these promising results supporting DP as a countermeasure to prevent space radiation induced-tissue damage, we conducted additional studies to combine radiation and simulated microgravity. We exposed skeletally mature male mice to simulated microgravity (using hindlimb unloading, HU) or total body irradiation (TBI, 2Gy 137Cs) or in combination (HU+TBI). We observed bone loss in the mice fed the control diet (CD) exposed to simulated spaceflight, as measured by cancellous bone microarchitecture parameters such as percent bone volume (BV/TV). In contrast, mice fed the DP diet did not exhibit similar bone loss with either treatments (HU or TBI) or combined (HU+TBI) as seen in most parameters. This was observed in both long bones (tibia) and axial bones (vertebrae). Furthermore, preliminary data shows that pre-feeding with the DP diet attenuates the HU-induced decrement in bone-forming osteoblasts colony counts and mineralization capacity of the osteoprogenitor cells. We also performed DP feeding at lower doses (5%, 10%) and found that these doses are less effective in preventing the radiation-induced bone loss. All our studies with the DP diet as a countermeasure were done with a period of pre-feeding ranging from 14 to 21 days before irradiation, and in order to test the capacity of the DP diet as a countermeasure provided after exposure to radiation, we exposed mice to 2Gy gamma radiation and then provided the DP diet 24 hours post-IR. Preliminary data indicates that DP mitigated the radiation-induced deficits in certain cancellous bone structural parameters. Finally, we showed that mice fed with the control diet (CD) increased oxidative damage in the serum after radiation exposure, whereas mice fed the DP diet do did not show such an increase. In summary, the DP diet is a promising countermeasure for spaceflight-induced tissue damage.
    Keywords: Aerospace Medicine
    Type: ARC-E-DAA-TN54627 , International Society for Gravitational Physiology (ISGP); Jun 18, 2018 - Jun 22, 2018; Noordwijk; Netherlands
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: The rodent hindlimb unloading (HU) model was developed in the 1980s to faciliate the study of mechanisms, responses, and treatments for the adverse effects of spaceflight. A number of variations on unloading systems and cage designs have been developed, although most entail individually housing the HU animals. In this study, we performed hindlimb unloading under group housing conditions. Our preliminary results indicate that HU animals that were group housed for 30 days, displayed musculoskeletal decrements associated with disuse, and further, body weights did not differ compared to age-matched controls. In conclusion, group housing of HU mice provides a novel means to simulate weightlessness under conditions that more closely resemble living conditions of Rodent Research Project ISS flight hardware habitats, and minimizes the social stress of isolation, which is consistent with current animal welfare standards (Guide for the Care and Use of Laboratory Animals: Eighth Edition, National Research Council).
    Keywords: Aerospace Medicine
    Type: ARC-E-DAA-TN48019 , The American Society for Gravitational and Space Research (ASGSR); Oct 25, 2017 - Oct 28, 2017; Seattle, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...