ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Aerospace Medicine  (67)
  • Life Sciences (General); Aerospace Medicine  (3)
  • Aerospace Medicine; Life Sciences (General)  (2)
  • Lunar and Planetary Science and Exploration; Aerospace Medicine  (1)
  • 1
    Publication Date: 2011-08-24
    Description: The purpose of this study was to determine whether applying foot pressure to unrestrained subjects during space flight could enhance the neuromuscular activation associated with rapid arm movements. Four men performed unilateral arm raises while wearing--or not wearing--specially designed boots during a 81- or 115-day space flight. Arm acceleration and surface EMG were obtained from selected lower limb and trunk muscles. Pearson r coefficients were used to evaluate similarity in phasic patterns between the two in-flight conditions. In-flight data also were magnitude normalized to the mean voltage value of the muscle activation waveforms obtained during the no-foot-pressure condition to facilitate comparison of activation amplitude between the two in-flight conditions. Foot pressure enhanced neuromuscular activation and somewhat modified the phasic features of the neuromuscular activation during the arm raises.
    Keywords: Aerospace Medicine
    Type: Acta astronautica (ISSN 0094-5765); Volume 42; 1-8; 231-46
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2004-12-03
    Description: Somatosensory input has been used to modify motor output in many contexts. During space flight, the use of the lower limb musculature is much less than during activities in 1g. Consequently the neuromuscular activity of the legs is also reduced during space flight. This decrease in muscle activity contributes to muscle atrophy. Furthermore, adaptations to weightlessness contribute to posture and locomotion problems upon the return to Earth. Providing techniques to counter the negative effects of weightlessness on the neuromuscular system is an important goal, particularly during a long-duration mission. Previous work by our group has shown that lower limb neuromuscular activation that normally precedes arm movements in 1g is absent or greatly reduced during similar movements made while freefloating. However, preliminary evidence indicates that applying pressure to the feet results in enhanced neuromuscular activation during rapid arm movements performed while freefloating. This finding suggests that sensory input can be used to "drive" the motor system to increase neuromuscular functioning throughout a mission. The purpose of this investigation was to quantify the increase in neuromuscular activation resulting from the application of pressure to the feet.
    Keywords: Aerospace Medicine
    Type: Proceedings of the First Biennial Space Biomedical Investigators' Workshop; 418-419
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2004-12-03
    Description: Locomotion is a complex task requiring the coordinated integration of multiple sensorimotor subsystems. This coordination is exemplified by the precise control of segmental kinematics that allows smooth progression of movement in the face of changing environmental constraints. Exposure to the microgravity environment encountered during space flight induces adaptive modification in the central processing of sensory input to produce motor responses appropriate for the prevailing environment. This inflight adaptive change in sensorimotor function is inappropriate for movement control in 1-g and leads to postflight disturbances in terrestrial locomotor function. We have previously explored the effects of short-duration (7-16 days) space flight on the control of locomotion. The goal of the present set of studies was to investigate the effects of long-duration spaceflight (3-6 months) on the control of locomotion with particular emphasis on understanding how the multiple interacting systems are adaptively modified by prolonged microgravity exposure.
    Keywords: Aerospace Medicine
    Type: Proceedings of the First Biennial Space Biomedical Investigators' Workshop; 411-412
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-06-11
    Description: The goal of the present study was to investigate the adaptive effects of variation in the direction of optic flow, experienced during linear treadmill walking, on modifying locomotor trajectory. Subjects (n = 30) walked on a motorized linear treadmill at 4.0 km/h for 24 minutes while viewing the interior of a 3D virtual scene projected onto a screen 1.5 m in front of them. The virtual scene depicted constant self-motion equivalent to either 1) walking around the perimeter of a room to one s left (Rotating Room group) 2) walking down the center of a hallway (Infinite Hallway group). The scene was static for the first 4 minutes, and then constant rate self-motion was simulated for the remaining 20 minutes. Before and after the treadmill locomotion adaptation period, subjects performed five stepping trials where in each trial they marched in place to the beat of a metronome at 90 steps/min while blindfolded in a quiet room. The subject s final heading direction (deg), final X (for-aft, cm) and final Y (medio-lateral, cm) positions were measured for each trial. During the treadmill locomotion adaptation period subject s 3D torso position was measured. We found that subjects in the Rotating Room group as compared to the Infinite Hallway group: 1) showed significantly greater deviation during post exposure testing in the heading direction and Y position opposite to the direction of optic flow experienced during treadmill walking 2) showed a significant monotonically increasing torso yaw angular rotation bias in the direction of optic flow during the treadmill adaptation exposure period. Subjects in both groups showed greater forward translation (in the +X direction) during the post treadmill stepping task that differed significantly from their pre exposure performance. Subjects in both groups reported no perceptual deviation in position during the stepping tasks. We infer that 3 viewing simulated rotary self-motion during treadmill locomotion causes adaptive modification of sensory-motor integration in the control of position and trajectory during locomotion which functionally reflects adaptive changes in the integration of visual, vestibular, and proprioceptive cues. Such an adaptation in the control of position and heading direction during locomotion due to the congruence of sensory information demonstrates the potential for adaptive transfer between sensorimotor systems and suggests a common neural site for the processing and self-motion perception and concurrent adaptation in motor output. This will result in lack of subjects perception of deviation of position and trajectory during the post treadmill step test while blind folded.
    Keywords: Aerospace Medicine
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-19
    Description: Upon return from spaceflight, a majority of crewmembers experience motion sickness (MS) symptoms. The interactions between crewmembers' adaptation to a gravitational transition, the performance decrements resulting from MS and/or use of promethazine (PMZ), and the constraints imposed by mission task demands could significantly challenge and limit an astronaut's ability to perform functional tasks during gravitational transitions. No operational countermeasure currently exists to mitigate the risks associated with these sensorimotor disturbances. Stochastic resonance (SR) can be thought of simply as "noise benefit" or an increase in information transfer by a system when in the presence of a non-zero level of noise. We have shown that low levels of stochastic vestibular stimulation (SVS) improve balance and locomotor performance due to SR (Goel et al. 2015, Mulavara et al. 2011, 2015). Additionally, a study in a 6-hydroxydopamine (6-OHDA) hemi-lesioned rat model of Parkinson's disease demonstrated improvements in locomotor activity after low-level SVS delivery possibly due to an increase in nigral gamma-aminobutyric acid (GABA) release in a dopamine independent way (Samoudi et al. 2012). SVS specifically increased GABA release on the lesioned, but not the intact side. These results suggest that SVS can cause targeted alterations of GABA release to affect performance of functional tasks. Activation of the GABA pathway is important in modulating MS and promoting adaptability (Cohen 2008). Magnusson et al. (2000) supported this finding by showing that the administration of a GABAB agonist caused a reversal of the symptoms that is normally seen after unilateral labyrinthectomy. Thus, GABA could play a significant role in reducing MS and promoting adaptability. We have taken advantage of the SR mechanism as a modulator of neurotransmitters to develop a unique SVS countermeasure system to mitigate MS symptoms and improve functional performance after landing. Healthy subjects (n=20) participated in two test sessions, one in which they received +/-400 microA of SVS and one where they received no stimulation (0 microA); the study design was counterbalanced. Subjects began by performing a series of four functional tasks 3-5 times as baseline measurements of task performance. Then, to induce MS, subjects walked an obstacle course with up-down reversing prisms. If they completed the course before achieving our pre-determined level of MS, they were asked to read a poster while making large up-down head movements to a metronome while still wearing the reversing prism goggles. Subjects were stopped every two minutes and asked to report their MS symptoms. Using the Pensacola Scale for motion sickness, test operators evaluated the level of MS of each subject. Once a subject reached an 8 on this scale, which is equivalent to mild malaise, or 30 minutes had passed since the start of the MS induction, this protocol was stopped. Finally, immediately after MS induction, subjects were asked to complete the four functional tasks again. Although, 100% of our subjects experienced at least one MS symptom, only 55% of our subjects experienced stomach awareness to any degree. Without SVS, only 40% of subjects lasted the full 30-minute MS induction protocol, while 65% of subjects lasted the full 30 minutes with SVS, which is nearly a significant increase (p=0.056). In addition, subjects showed significant improvement from baseline when performing a tandem walk and a prone-to-stand test immediately after the MS induction protocol was stopped but the stimulation level was continued. The results are promising and future work includes comparing MS progression between PMZ and SVS directly in subjects that are provoked to a minimum of nausea. Low levels of SVS stimulation may serve as a non-pharmacological countermeasure to replace or reduce the PMZ dosage requirements and concurrently improve functional performance during transitions to new gravitational environments after spaceflight.
    Keywords: Aerospace Medicine
    Type: JSC-CN-37996 , Human Research Program Investigators'' Workshop (HRP IWS 2017); Jan 23, 2017 - Jan 26, 2017; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-19
    Description: BACKGROUND: Coordinated locomotion has proven to be challenging for many astronauts following long duration spaceflight. As NASA's vision for spaceflight points toward interplanetary travel, we must prepare for unassisted landings, where crewmembers may need to perform mission critical tasks within minutes of landing. Thus, it is vital to develop a knowledge base from which operational guidelines can be written that define when astronauts can be expected to safely perform certain tasks. Data obtained during the Field Test experiment (FT) will add important insight to this knowledge base. Specifically, we aim to develop a recovery timeline of functional sensorimotor performance during the first 24 hours and several days after landing. METHODS: FT is an ongoing study of 30 long-duration ISS crewmembers. Thus far, 9 have completed the full FT (5 U.S. Orbital Segment [USOS] astronauts and 4 Russian cosmonauts) and 4 more consented and launching within the next year. This is in addition to the eighteen crewmembers that participated in the pilot FT (11 USOS and 7 Russian crewmembers). The FT is conducted three times preflight and three times during the first 24 hours after landing. All crewmembers were tested in Kazakhstan in either the medical tent at the Soyuz landing site (~one hour post-landing), or at the airport (~four hours post-landing). The USOS crewmembers were also tested at the refueling stop (~12 hours post-landing) and at the NASA Johnson Space Center (~24 hours post-landing) and a final session 7 days post-landing. Crewmembers are instrumented with 9 inertial measurement unit sensors that measure acceleration and angular displacement (APDM's Emerald Sensors) and foot pressure-sensing insoles that measure force, acceleration, and center of pressure (Moticon GmbH, Munich, Germany) along with heart rate and blood pressure recording instrumentation. The FT consists of 12 tasks, but here we will focus on the most challenging task, the Tandem Walk, which was also performed as part of pilot FT. To perform the Tandem Walk, subjects begin with their feet together, their arms crossed at their chest and eyes closed. When ready, they brought one foot forward and touched the heel of their foot to their toe, repeating with the other foot, and continuing for about 10 steps. Three trials were collected with the eyes closed and a fourth trial was collected with eyes open. There are four metrics which are used to determine the performance level of the Tandem Walk. The first is percent correct steps. For a step to be counted as correct, the foot could not touch the ground while bringing it forward (no side stepping), eyes must stay closed during the eyes closed trials, the heel and toe should be touching, or almost touching (no large gaps) and there shouldn't be more than a three second pause between steps. Three judges score each step and the median of the three scores is kept. The second metric is the average step speed, or the number of steps/time to complete them. Thirdly, the root mean squared (RMS) error in the resultant trunk acceleration is used to determine the amount of upper body instability observed during the task. Finally, the RMS error of the mediolateral center of pressure as measured by the Moticon insoles is used to determine the mediolateral instability at the foot level. These four parameters are combined into a new overall Tandem Walk Parameter. RESULTS: Preliminary results show that crewmembers perform the Tandem Walk significantly worse the first 24 hours after landing as compared to their baseline performance. We find that each of the four performance metrics is significantly worse immediately after landing. We will present the results of tandem walk performance during the FT thus far. We will also combine these with the 18 crewmembers that participated in the pilot FT, concentrating on the level of performance and recovery rate. CONCLUSION: The Tandem Walk data collected as part of the FT experiment will provide invaluable information on the performance capabilities of astronauts during the first 24 hours after returning from long-duration spaceflight that can be used in planning future Mars, or other deep-space missions with unassisted landings. FT will determine the average sensorimotor recovery timeline and inform return-to-duty guidelines for unassisted landings.
    Keywords: Aerospace Medicine
    Type: JSC-CN-37994 , Human Research Program Investigators'' Workshop (HRP IWS 2017); Jan 23, 2017 - Jan 26, 2017; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-19
    Description: Astronauts returning from space flight show significant inter-subject variations in their abilities to readapt to a gravitational environment because of their innate sensory weighting. The ability to predict the manner and degree to which each individual astronaut will be affected would improve the effectiveness of countermeasure training programs designed to enhance sensorimotor adaptability. We hypothesize participant's ability to utilize individual sensory information (vision, proprioception and vestibular) influences adaptation in sensorimotor performance after space flight. The goal of this study is to develop a reliable protocol to test proprioceptive utilization in a functional postural control task. Subjects "stand" in a supine position while strapped to a backpack frame holding a friction-free device using air-bearings that allow the subject to move freely in the frontal plane, similar to when in upright standing. The frame is attached to a pneumatic cylinder, which can provide different levels of a gravity-like force that the subject must balance against to remain "upright". The supine posture with eyes closed ensures reduced vestibular and visual contribution to postural control suggesting somatosensory and/or non-otolith vestibular inputs will provide relevant information for maintaining balance control in this task. This setup is called the gravity bed. Fourteen healthy subjects carried out three trials each with eyes open alternated with eyes closed, "standing" on their dominant leg in the gravity bed environment while loaded with 60 percent of their body weight. Subjects were instructed to: "use your sense of sway about the ankle and pressure changes under the foot to maintain balance." Maximum length of a trial was 45 seconds. A force plate underneath the foot recorded forces and moments during the trial and an inertial measurement unit (IMU) attached on the backpack's frame near the center of mass of the subject recorded upper body postural responses. Series of linear and non-linear analyses were carried out on several force plate and IMU data including stabilogram diffusion analysis on the center of pressure (COP) to find a subset of parameters that were sensitive to detect differences in postural performance between eyes open and closed conditions. Results revealed that seven parameters (root mean square (RMS) of medio-lateral (ML) COP, range of ML COP, RMS of roll moment, range of trunk roll, minimum time-to-boundary (TTB), integrated TTB, and critical mean square planar displacement (delta r (sup 2) (sub c)) were significantly different between eyes open and closed conditions. We will present data to show the efficacy of using performance in single leg stance with eyes closed on the gravity bed to assess individuals' ability to utilize proprioceptive information in a functional postural control task to predict re-adaptation for sensorimotor and functional performance.
    Keywords: Aerospace Medicine
    Type: JSC-CN-34840 , 2016 NASA Human Research Program Investigators'' Workshop (HRP IWS 2016); Feb 08, 2016 - Feb 11, 2016; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-19
    Description: Introduction: Over the last two decades, several studies have been published on the impact of long-duration (i.e., 22 days or longer) spaceflight on the central nervous system (CNS). In consideration of the health and performance of crewmembers in flight and post-flight, we are conducting a controlled prospective longitudinal study to investigate the effects of spaceflight on the extent, longevity and neural bases of sensorimotor, cognitive, and neural changes. Multiple studies have demonstrated the effects of spaceflight on the vestibular system. One of the supporting tests conducted in this protocol is the Vestibular Evoked Myogenic Potential (VEMP) test that provides a unilateral measure of otolith (saccule and utricle) function. A different approach was taken for ocular VEMP (oVEMP) testing using a head striker system (Wackym et al. 2012). The oVEMP is generally considered to be a measure of utricle function. The the otolithic input to the inferior oblique muscle is predominately from the utricular macula. Thus, quantitatively, oVEMP tests utricular function. Another practical extension of these relationships is that the oVEMP reflects the superior vestibular nerve function. Methods: Ground testing was administered on 16 control subjects and for 8 subjects over four repeated sessions spanning 70 days. The oVEMP was elicitied via a hand held striker by a vibrotactile pulse presented at the rate of 1 Hz for 24 seconds on the side of the head as subjects lay supine on a gurney. Subjects were directed to gaze approximately 25 degrees above straight ahead in semi-darkness. For the oVEMP electromyograms will be recorded with active bipolar electrodes (Delsys Inc., Boston, MA) on the infra-orbital ridge 1 cm below the eyelid with a reference electrode on the below the knee cap. The EMG potentials were amplified; band-pass filtered using a BagnoliTM Desktop EMG System (Delsys Inc., Boston, MA, USA). This EMG signal is sampled at 10 kHz and the data stimulus onset to 100 MS was averaged over 24 trial repetitions for the vibrotactile VEMP. The typical oVEMP EMG response is an excitatory potential with first peak occurring at 11-12 ms and second peak at 18 ms. This requires a total recording time of approximately 29 seconds per trial which includes 5 seconds of no vibrotactile stimulation at the beginning of the protocol. The primary dependent measures consist of the latency and peak-to-peak amplitude from the EMG signals, which will be normalized to EMG levels at the beginning of the protocol. Data were collected for 3 repeated trials with striker stimulation on both the left and right side of the head Results: The oVEMP p1 range was observed at 3-14 ms and n1 at 7-19 ms. The striker system provided a consistent and rapid method for oVEMP testing. Discussion: Crew testing is in progress to determine changes in results between pre and post flight.
    Keywords: Aerospace Medicine
    Type: JSC-CN-34865 , Human Research Program Investigators'' Workshop: Integrated Pathways to Mars; Feb 08, 2016 - Feb 11, 2016; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-19
    Description: During the mechanical unloading of spaceflight and its ground-based analogs, muscle mass and muscle strength of the calf are difficult to preserve despite exercise countermeasures that effectively protect these parameters in the thigh. It is unclear what effects these local losses have on balance and whole body function which will be essential for successful performance of demanding tasks during future exploration missions.
    Keywords: Aerospace Medicine
    Type: JSC-CN-34697 , American College of Sports Medicine (ACSM) Annual Meeting; Jun 01, 2016 - Jun 04, 2016; Boston, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-19
    Description: Sensorimotor changes such as postural and gait instabilities can affect the functional performance of astronauts when they transition across different gravity environments. We are developing a method, based on stochastic resonance (SR), to enhance information transfer by applying non-zero levels of external noise on the vestibular system (vestibular stochastic resonance, VSR). Our previous work has shown the advantageous effects of VSR in a balance task of standing on an unstable surface. This technique to improve detection of vestibular signals uses a stimulus delivery system that is wearable or portable and provides imperceptibly low levels of white noise-based binaural bipolar electrical stimulation of the vestibular system. The goal of this project is to determine optimal levels of stimulation for SR applications by using a defined vestibular threshold of motion detection. A series of experiments were carried out to determine a robust paradigm to identify a vestibular threshold that can then be used to recommend optimal stimulation levels for SR training applications customized to each crewmember. Customizing stimulus intensity can maximize treatment effects. The amplitude of stimulation to be used in the VSR application has varied across studies in the literature such as 60% of nociceptive stimulus thresholds. We compared subjects' perceptual threshold with that obtained from two measures of body sway. Each test session was 463s long and consisted of several 15s sinusoidal stimuli, at different current amplitudes (0-2 mA), interspersed with 20-20.5s periods of no stimulation. Subjects sat on a chair with their eyes closed and had to report their perception of motion through a joystick. A force plate underneath the chair recorded medio-lateral shear forces and roll moments. First we determined the percent time during stimulation periods for which perception of motion (activity above a pre-defined threshold) was reported using the joystick, and body sway (two standard deviation of the noise level in the baseline measurement) was detected by the sensors. The percentage time at each stimulation level for motion detection was normalized with respect to the largest value and a logistic regression curve fit was applied to these data. The threshold was defined at the 50% probability of motion detection. Comparison of threshold of motion detection obtained from joystick data versus body sway suggests that perceptual thresholds were significantly lower, and were not impacted by system noise. Further, in order to determine optimal stimulation amplitude to improve balance, two sets of experiments were carried out. In the first set of experiments, all subjects received the same level of stimuli and the intensity of optimal performance was projected back on subjects' vestibular threshold curve. In the second set of experiments, on different subjects, stimulation was administered from 20-400% of subjects' vestibular threshold obtained from joystick data. Preliminary results of our study show that, in general, using stimulation amplitudes at 40-60% of perceptual motion threshold improved balance performance significantly compared to control (no stimulation). The amplitude of vestibular stimulation that improved balance function was predominantly in the range of +/- 100 to +/- 400 micro A. We hypothesize that VSR stimulation will act synergistically with sensorimotor adaptability (SA) training to improve adaptability by increasing utilization of vestibular information and therefore will help us to optimize and personalize a SA countermeasure prescription. This combination will help to significantly reduce the number of days required to recover functional performance to preflight levels after long-duration spaceflight.
    Keywords: Aerospace Medicine
    Type: JSC-CN-32243 , 2015 NASA Human Research Program Investigators'' Workshop (HRP IWS 2015); Jan 13, 2015 - Jan 15, 2015; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...