ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Aerospace Medicine; Life Sciences (General)  (2)
  • Lunar and Planetary Science and Exploration; Aerospace Medicine  (1)
  • Man/System Technology and Life Support; Life Sciences (General)  (1)
  • 1
    Publication Date: 2019-07-12
    Description: No abstract available
    Keywords: Aerospace Medicine; Life Sciences (General)
    Type: JSC-CN-31155
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-19
    Description: Exposure to the microgravity conditions of spaceflight causes astronauts to experience alterations in multiple physiological systems. These physiological changes include sensorimotor disturbances, cardiovascular deconditioning, and loss of muscle mass and strength. Some or all of these changes might affect the ability of crewmembers to perform critical mission tasks immediately after landing on a planetary surface. The goals of the Functional Task Test (FTT) study were to determine the effects of spaceflight on functional tests that are representative of critical exploration mission tasks and to identify the key physiological factors that contribute to decrements in performance. The FTT was comprised of seven functional tests and a corresponding set of interdisciplinary physiological measures targeting the sensorimotor, cardiovascular and muscular changes associated with exposure to spaceflight. Both Shuttle and ISS crewmembers participated in this study. Additionally, we conducted a supporting study using the FTT protocol on subjects before and after 70 days of 6 head-down bed rest. The bed rest analog allowed us to investigate the impact of body unloading in isolation on both functional tasks and on the underlying physiological factors that lead to decrements in performance, and then to compare them with the results obtained in our spaceflight study. Spaceflight data were collected on three sessions before flight, on landing day (Shuttle only) and 1, 6 and 30 days after landing. Bed rest subjects were tested three times before bed rest and immediately after getting up from bed rest as well as 1, 6, and 12 days after reambulation. We have shown that for Shuttle, ISS and bed rest subjects, functional tasks requiring a greater demand for dynamic control of postural equilibrium (i.e. fall recovery, seat egress/obstacle avoidance during walking, object translation, jump down) showed the greatest decrement in performance. Functional tests with reduced requirements for postural stability (i.e. hatch opening, ladder climb, manual manipulation of objects and tool use) showed little reduction in performance. These changes in functional performance were paralleled by similar decrements in sensorimotor tests designed to specifically assess postural equilibrium and dynamic gait control. Bed rest subjects experienced similar deficits both in functional tests with balance challenges and in sensorimotor tests designed to evaluate postural and gait control as spaceflight subjects indicating that body support unloading experienced during spaceflight plays a central role in post-flight alteration of functional task performance. To determine how differences in body-support loading experienced during in-flight treadmill exercise affect postflight functional performance, the loading history for each subject during in-flight treadmill (T2) exercise was correlated with postflight measures of performance. ISS crewmembers who walked on the treadmill with higher pull-down loads had enhanced post-flight performance on tests requiring mobility. Taken together the spaceflight and bed rest data point to the importance of supplementing inflight exercise countermeasures with balance and sensorimotor adaptability training. These data also support the notion that inflight treadmill exercise performed with higher body loading provides sensorimotor benefits leading to improved performance on functional tasks that require dynamic postural stability and mobility.
    Keywords: Man/System Technology and Life Support; Life Sciences (General)
    Type: JSC-CN-33122 , Humans in Space Symposium (HIS); Jun 29, 2015 - Jul 03, 2015; Prague; Czechoslovakia
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-08-13
    Description: Astronauts experience sensorimotor changes during spaceflight, particularly during G-transitions. Post flight sensorimotor changes include spatial disorientation, along with postural and gait instability that may degrade operational capabilities of the astronauts and endanger the crew. A sensorimotor countermeasure that mitigates these effects would improve crewmember safety and decrease risk. The goal of this research is to investigate the potential use of stochastic vestibular stimulation (SVS) as a technology to improve sensorimotor function. We hypothesize that low levels of SVS will improve sensorimotor perception through the phenomenon of stochastic resonance (SR), when the response of a nonlinear system to a weak input signal is enhanced by the application of a particular nonzero level of noise. This study aims to advance the development of SVS as a potential countermeasure by 1) demonstrating the exhibition of stochastic resonance in vestibular perception, a vital component of sensorimotor function, 2) investigating the repeatability of SR exhibition, and 3) determining the relative contribution of the semicircular canals (SCC) and otolith (OTO) organs to vestibular perceptual SR. A constant current stimulator was used to deliver bilateral bipolar SVS via electrodes placed on each of the mastoid processes, as previously done. Vestibular perceptual motion recognition thresholds were measured using a 6-degree of freedom MOOG platform and a 150 trial 3-down/1-up staircase procedure. In the first test session, we measured vestibular perceptual thresholds in upright roll-tilt at 0.2 Hz (SCC+OTO) with SVS ranging from 0-700 A. In a second test session a week later, we re-measured roll-tilt thresholds with 0, optimal (from test session 1), and 1500 A SVS levels. A subset of these subjects, plus naive subjects, participated in two additional test sessions in which we measured thresholds in supine roll-rotation at 0.2 Hz (SCC) and upright y-translation at 1 Hz (OTO) with SVS up to 700 A. A sinusoidal galvanic vestibular stimulation (GVS) perceptual threshold was also measured on each test day and used to normalize the SVS levels across subjects. In roll-tilt thresholds with SVS, the characteristic SR curve was qualitatively exhibited in 10 of 12 subjects, and the improvement in motion threshold was significant in 6 subjects, indicating that optimal SVS improved passive body motion perception in a way that is consistent with classical SR theory. A probabilistic comparison to numeric simulations further validated these experimental results. On the second test session, 4 out of the 10 SR exhibitors showed repeated improvement with SVS compared to the no SVS condition. Data collection is ongoing for the last two test sessions in which SCC and OTO only perceptual motion recognition thresholds are being measured with SVS. The final results of these test sessions will give insight into whether vestibular perceptual SR can occur when only one type of vestibular sensor is sensing motion or if it is more evident when sensory integration between the SCC and OTO is occurring during the motion. The overall purpose of this research is to further quantify the effects of SVS on various sensorimotor tasks and to gain a more fundamental understanding of how SVS causes SR in the vestibular system. In the context of human space flight, results from this research will help in understanding how SVS may be practically implemented in the future as a component of a comprehensive countermeasure plan for G-transition adaptation.
    Keywords: Aerospace Medicine; Life Sciences (General)
    Type: JSC-CN-35043 , NASA Human Research Program Investigators'' Workshop (HRP IWS 2016); Feb 08, 2016 - Feb 11, 2016; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: Following spaceflight, crewmembers experience postural and locomotor instability. The magnitude and duration of post-flight sensorimotor disturbances increase with longer duration exposure to microgravity. These post-flight postural and locomotor alterations can pose a risk to crew safety and to mission objectives if nominal or emergency vehicle egress is required immediately following long-duration spaceflight. Gait instabilities could prevent or extend the time required to make an emergency egress from the Orbiter, Crew Return Vehicle or a future Martian lander leading to compromised mission objectives. We propose a countermeasure that aids in maintaining functional locomotor performance. This includes retaining the ability to perform vehicular egress and meet early mission objectives soon after landing on a planetary surface.
    Keywords: Lunar and Planetary Science and Exploration; Aerospace Medicine
    Type: Conference on International Space Station Utilization; Oct 15, 2001 - Oct 18, 2001; Kennedy Space Center, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...