ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-10
    Description: An extensive parametric study of vortices shed from airfoil vortex generators has been conducted to determine the dependence of initial vortex circulation and peak vorticity on elements of the airfoil geometry and impinging flow conditions. These elements include the airfoil angle of attack, chord length, span, aspect ratio, local boundary layer thickness, and free stream Mach number. In addition, the influence of airfoil-to-airfoil spacing on the circulation and peak vorticity has been examined for pairs of co-rotating and counter-rotating vortices. The vortex generators were symmetric airfoils having a NACA-0012 cross-sectional profile. These airfoils were mounted either in isolation, or in pairs, on the surface of a straight pipe. The turbulent boundary layer thickness to pipe radius ratio was about 17 percent. The circulation and peak vorticity data were derived from cross-plane velocity measurements acquired with a seven-hole probe at one chord-length downstream of the airfoil trailing edge location. The circulation is observed to be proportional to the free-stream Mach number, the angle-of-attack, and the span-to-boundary layer thickness ratio. With these parameters held constant, the circulation is observed to fall off in monotonic fashion with increasing airfoil aspect ratio. The peak vorticity is also observed to be proportional to the free-stream Mach number, the airfoil angle-of-attack, and the span-to-boundary layer thickness ratio. Unlike circulation, however, the peak vorticity is observed to increase with increasing aspect ratio, reaching a peak value at an aspect ratio of about 2.0 before falling off again at higher values of aspect ratio. Co-rotating vortices shed from closely spaced pairs of airfoils have values of circulation and peak vorticity under those values found for vortices shed from isolated airfoils of the same geometry. Conversely, counter-rotating vortices show enhanced values of circulation and peak vorticity when compared to values obtained in isolation. The circulation may be accurately modeled with an expression based on Prandtl's relationship between finite airfoil circulation and airfoil geometry. A correlation for the peak vorticity has been derived from a conservation relationship equating the moment at the airfoil tip to the rate of angular momentum production of the shed vortex, modeled as a Lamb (ideal viscous) vortex. This technique provides excellent qualitative agreement to the observed behavior of peak vorticity for low aspect ratio airfoils typically used as vortex generators.
    Keywords: Aerodynamics
    Type: NASA/CR-2001-211144 , E-12996 , NAS 1.26:211144
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-10
    Description: A test facility designed to simulate a bifurcated subsonic diffuser operating within a mixed compression inlet is described. The subsonic diffuser in this facility modeled a bypass cavity feature often used in mixed compression inlets for engine flow matching and normal shock control. A bypass cavity-driven flow separation was seen to occur in the subsonic diffuser without applied flow control. Flow control in the form of vortex generators and/or a partitioned bypass cavity cover plate were used to eliminate this flow separation, providing a 2% increase in area-averaged total pressure recovery, and a 70% reduction in circumferential distortion intensity.
    Keywords: Aerodynamics
    Type: NASA/CR-2000-210460 , E-12456 , NAS 1.26:210460
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: The development of an effective design strategy for surface-mounted vortex generator arrays in a subsonic diffuser is described in this report. This strategy uses the strengths of both computational and experimental analyses to determine beneficial vortex generator locations and sizes. A parabolized Navier-Stokes solver, RNS3D, was used to establish proper placement of the vortex generators for reduction in circumferential total pressure distortion. Experimental measurements were used to determine proper vortex generator sizing to minimize total pressure recovery losses associated with vortex generator device drag. The best result achieved a 59% reduction in the distortion index DC60, with a 0.3% reduction in total pressure recovery.
    Keywords: Aerodynamics
    Type: NASA-TM-107357 , NAS 1.15:107357 , E-10511 , International Mechanical Engineering Conference and Exhibit; Nov 17, 1996 - Nov 22, 1996; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...