ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Pharmacology, Biochemistry and Behavior 49 (1994), S. 795-800 
    ISSN: 0091-3057
    Keywords: Behavior ; DPDPE ; EEG ; Fetus ; Naltrindole ; Opioids ; Pregnancy ; δ-Opioid receptor
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Chemistry and Pharmacology , Medicine
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: A promising path for developing a low-boom configuration is a multifidelity approach that (1) starts from a low-fidelity low-boom design, (2) refines the low-fidelity design with computational fluid dynamics (CFD) equivalent-area (Ae) analysis, and (3) improves the design with sonic-boom analysis by using CFD off-body pressure distributions. The focus of this paper is on the third step of this approach, in which the design is improved with sonic-boom analysis through the use of CFD calculations. A new inverse design process for off-body pressure tailoring is formulated and demonstrated with a low-boom supersonic configuration that was developed by using the mixed-fidelity design method with CFD Ae analysis. The new inverse design process uses the reverse propagation of the pressure distribution (dp/p) from a mid-field location to a near-field location, converts the near-field dp/p into an equivalent-area distribution, generates a low-boom target for the reversed equivalent area (Ae,r) of the configuration, and modifies the configuration to minimize the differences between the configuration s Ae,r and the low-boom target. The new inverse design process is used to modify a supersonic demonstrator concept for a cruise Mach number of 1.6 and a cruise weight of 30,000 lb. The modified configuration has a fully shaped ground signature that has a perceived loudness (PLdB) value of 78.5, while the original configuration has a partially shaped aft signature with a PLdB of 82.3.
    Keywords: Aerodynamics
    Type: AIAA Paper 2011-3498 , NL1676L-12750 , 29th AIAA Applied Aerodynamics Conference; Jun 27, 2011 - Jun 30, 2011; Honolulu, HI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: The design and optimization of a low-boom supersonic aircraft using the state-of-the- art o -body aerodynamics and sonic boom analysis has long been a challenging problem. The focus of this paper is to demonstrate an e ective geometry parameterization scheme and a numerical optimization approach for the aft shaping of a low-boom supersonic aircraft using o -body pressure calculations. A gradient-based numerical optimization algorithm that models the objective and constraints as response surface equations is used to drive the aft ground signature toward a ramp shape. The design objective is the minimization of the variation between the ground signature and the target signature subject to several geometric and signature constraints. The target signature is computed by using a least-squares regression of the aft portion of the ground signature. The parameterization and the deformation of the geometry is performed with a NASA in- house shaping tool. The optimization algorithm uses the shaping tool to drive the geometric deformation of a horizontal tail with a parameterization scheme that consists of seven camber design variables and an additional design variable that describes the spanwise location of the midspan section. The demonstration cases show that numerical optimization using the state-of-the-art o -body aerodynamic calculations is not only feasible and repeatable but also allows the exploration of complex design spaces for which a knowledge-based design method becomes less effective.
    Keywords: Aerodynamics
    Type: AIAA Paper 2012-0020 , NF1676L-12815 , 50th AIAA Aerospace Sciences Meeting and Exhibit; Jan 09, 2012 - Jan 12, 2012; Nashville, TN; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-10
    Description: Simulation results obtained by using FUN2D for robust airfoil shape optimization in transonic viscous flow are included to show the potential of the profile optimization method for generating fairly smooth optimal airfoils with no off-design performance degradation.
    Keywords: Aerodynamics
    Type: NASA/TM-2003-212408 , L-18283 , NAS 1.15:212408
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: The paper introduces an automation process of generating a tetrahedral mesh for computational fluid dynamics (CFD) analysis of aircraft configurations in early conceptual design. The method was developed for CFD-based sonic boom analysis of supersonic configurations, but can be applied to aerodynamic analysis of aircraft configurations in any flight regime.
    Keywords: Aeronautics (General); Fluid Mechanics and Thermodynamics
    Type: AIAA Paper-2014-0118 , NF1676L-17865 , AIAA Aerospace Sciences Meeting; Jan 13, 2014 - Jan 17, 2014; National Harbor, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: This paper presents an approach to modifying an existing baseline configuration that has been designed to achieve low-boom characteristics in order to minimize drag while not severely penalizing baseline sonic boom levels. The baseline configuration that was used is the result of using a mixed-fidelity CFD-based low-boom design process that has been tested and verified. Shape modifications are carried out by using arbitrary shape-deformation algorithms. The focus of this paper is the integration of several key enabling techniques and methods for efficient redesign under stringent constraints.
    Keywords: Aerodynamics
    Type: AIAA Paper 2010-844 , LF99-9976 , 48th AIAA Aerospace Sciences Meeting; Jan 04, 2010 - Jan 07, 2010; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...