ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • MECHANICS  (2)
  • Aerodynamics; Launch Vehicles and Launch Operations  (1)
  • 1
    Publication Date: 2019-07-13
    Description: As part of comprehensive efforts to develop physics-based risk assessment techniques for space systems at NASA, coupled computational fluid and rigid body dynamic simulations were carried out to investigate the flow mechanisms that accelerate tank fragments in bursting pressurized vessels. Simulations of several configurations were compared to analyses based on the industry-standard Baker explosion model, and were used to formulate an improved version of the model. The standard model, which neglects an external fluid, was found to agree best with simulation results only in configurations where the internal-to-external pressure ratio is very high and fragment curvature is small. The improved model introduces terms that accommodate an external fluid and better account for variations based on circumferential fragment count. Physics-based analysis was critical in increasing the model's range of applicability. The improved tank burst model can be used to produce more accurate risk assessments of space vehicle failure modes that involve high-speed debris, such as exploding propellant tanks and bursting rocket engines.
    Keywords: Aerodynamics; Launch Vehicles and Launch Operations
    Type: ARC-E-DAA-TN14375 , Probablistic Safety Assessment and Management Conference (PSAM 12); Jun 22, 2014 - Jun 27, 2014; Honolulu, HI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-12
    Description: Supersonic flow about cone calculated accurately. Report presents theoretical basis of computer code solving parabolized Navier-Stokes equations of supersonic and hypersonic flow. For increased accuracy in resolution of details of strong aerodynamic shocks, code incorporates implicit, finite-volume, upwind numerical-integration scheme. Performs well in numerical simulations of flows around simple bodies.
    Keywords: MECHANICS
    Type: ARC-12146 , NASA Tech Briefs (ISSN 0145-319X); 14; 5; P. 73
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-12
    Description: Report discusses computational fluid dynamics (CFD) to simulate generation and propagation of sonic booms in near- and mid-field regions of supersonic flows about simplified bodies representative of advanced airplanes. Parabolized Navier-Stokes equations integrated by implicit, approximate-factorization, finite-volume algorithm in which crossflow inviscid fluxes evaluated by Roe's flux-difference-splitting scheme. Near-field solutions obtained by applying algorithm to flows immediately surrounding bodies. Solutions transferred to computer codes based on Whitham"s F-function theory for extrapolation to far-field.
    Keywords: MECHANICS
    Type: ARC-12855 , NASA Tech Briefs (ISSN 0145-319X); 16; 8; P. 58
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...