ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • FLUID MECHANICS AND HEAT TRANSFER  (6)
  • NUMERICAL ANALYSIS  (4)
  • Aerodynamics; Fluid Mechanics and Thermodynamics  (2)
  • 1
    Publication Date: 2011-08-19
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: AIAA Journal (ISSN 0001-1452); 28; 973
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-08-31
    Description: A review is given of computations for a series of nominally 2-D laminar viscous-inviscid interactions. Comparisons were made with detailed experimental shock tunnel results. The shock wave boundary layer interactions considered were induced by a compression ramp in one case and by an externally generated incident shock in the second case. In general, good agreement was reached between the grid refined calculations and experiment for the incipient and small separation conditions. For the highly separated flow, 3-D calculations which included the finite span effects of the experiment were required in order to obtain agreement with the data.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NASA, Lewis Research Center, Computational Fluid Dynamics Symposium on Aeropropulsion; p 473-486
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-19
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: AIAA Journal (ISSN 0001-1452); 25; 527-534
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-08-19
    Description: An implicit upwind scheme for the compressible Navier-Stokes equations is described and applied to the internal flow in a dual-throat nozzle. The method is second-order accurate spatially and naturally dissipative. A spatially-split approximate factorization method is used to obtain efficient steady-state solutions on the NASA Langley VPS-32 (CYBER 205) supercomputer.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-10-02
    Description: A comparative study was made using 4 different computer codes for solving the compressible Navier-Stokes equations. Three different test problems were used, each of which has features typical of high speed internal flow problems of practical importance in the design and analysis of propulsion systems for advanced hypersonic vehicles. These problems are the supersonic flow between two walls, one of which contains a 10 deg compression ramp, the flow through a hypersonic inlet, and the flow in a 3-D corner formed by the intersection of two symmetric wedges. Three of the computer codes use similar recently developed implicit upwind differencing technology, while the fourth uses a well established explicit method. The computed results were compared with experimental data where available.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: AGARD, Validation of Computational Fluid Dynamics. Volume 1: Symposium Papers and Round Table Discussion; 15 p
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-06-28
    Description: A previously developed upwind/relaxation algorithm for solving the unsteady, compressible, thin-layer Navier-Stokes equations is presently modified so that the downstream influence of the subsonic part of the boundary layer in an otherwise supersonic flow is suppressed by restricting the streamwise pressure gradient. A 'parabolized' solution is then efficiently obtained by marching downstream and iterating locally in each crossflow plane until achieving convergence. This parabolized solution is an excellent final one for problems without large adverse streamwise pressure gradients.
    Keywords: NUMERICAL ANALYSIS
    Type: AIAA PAPER 87-1113
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-06-28
    Description: The Full Approximation Scheme (FAS) multigrid method is applied to several implicit flux-split algorithms for solving the three-dimensional Euler equations in a body fitted coordinate system. Each of the splitting algorithms uses a variation of approximate factorization and is implemented in a finite volume formulation. The algorithms are all vectorizable with little or no scalar computation required. The flux vectors are split into upwind components using both the splittings of Steger-Warming and Van Leer. The stability and smoothing rate of each of the schemes are examined using a Fourier analysis of the complete system of equations. Results are presented for three-dimensional subsonic, transonic, and supersonic flows which demonstrate substantially improved convergence rates with the multigrid algorithm. The influence of using both a V-cycle and a W-cycle on the convergence is examined.
    Keywords: NUMERICAL ANALYSIS
    Type: NASA-TP-2829 , L-16416 , NAS 1.60:2829
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-06-28
    Description: Numerical flux formulas for the convection terms in the Euler or Navier-Stokes equations are analyzed with regard to their accuracy in representing steady nonlinear and linear waves (shocks and entropy/shear waves, respectively). Numerical results are obtained for a one-dimensional conical Navier-Stokes flow including both a shock and a boundary layer. Analysis and experiments indicate that for an accurate representation of both layers the flux formula must include information about all different waves by which neighboring cells interact, as in Roe's flux-difference splitting. In comparison, Van Leer's flux-vector splitting, which ignores the linear waves, badly diffuses the boundary layer. The results of MacCormack's scheme, if properly tuned, are significantly better. The use of a sufficiently detailed flux formula appears to reduce the number of cells required to resolve a boundary layer by a factor 1/2 to 1/4 and thus pays off.
    Keywords: NUMERICAL ANALYSIS
    Type: AIAA PAPER 87-1104
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: Solution-adaptive grid techniques are essential to the attainment of practical, user friendly, computational fluid dynamics (CFD) applications. In this three-day workshop, experts gathered together to describe state-of-the-art methods in solution-adaptive grid refinement, analysis, and implementation; to assess the current practice; and to discuss future needs and directions for research. This was accomplished through a series of invited and contributed papers. The workshop focused on a set of two-dimensional test cases designed by the organizers to aid in assessing the current state of development of adaptive grid technology. In addition, a panel of experts from universities, industry, and government research laboratories discussed their views of needs and future directions in this field.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NASA-CP-3316 , NAS 1.55:3316 , L-17539 , NIPS-96-07318 , Nov 07, 1994 - Nov 09, 1994; Hampton, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: A detailed grid convergence study has been conducted to establish accurate reference solutions corresponding to the one-equation linear eddy-viscosity Spalart-Allmaras turbulence model for two dimensional turbulent flows around the NACA 0012 airfoil and a flat plate. The study involved three widely used codes, CFL3D (NASA), FUN3D (NASA), and TAU (DLR), and families of uniformly refined structured grids that differ in the grid density patterns. Solutions computed by different codes on different grid families appear to converge to the same continuous limit, but exhibit different convergence characteristics. The grid resolution in the vicinity of geometric singularities, such as a sharp trailing edge, is found to be the major factor affecting accuracy and convergence of discrete solutions, more prominent than differences in discretization schemes and/or grid elements. The results reported for these relatively simple turbulent flows demonstrate that CFL3D, FUN3D, and TAU solutions are very accurate on the finest grids used in the study, but even those grids are not sufficient to conclusively establish an asymptotic convergence order.
    Keywords: Aerodynamics; Fluid Mechanics and Thermodynamics
    Type: NF1676L-18876 , AIAA Science and Technology Forum and Exposition (AIAA SciTech 2015); Jan 05, 2015 - Jan 09, 2015; Kissimmee, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...