ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Additives  (1)
  • Benthic foraminifera  (1)
  • 1
    Publikationsdatum: 2022-10-26
    Beschreibung: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Brinkmann, I., Ni, S., Schweizer, M., Oldham, V. E., Quintana Krupinski, N. B., Medjoubi, K., Somogyi, A., Whitehouse, M. J., Hansel, C. M., Barras, C., Bernhard, J. M., & Filipsson, H. L. Foraminiferal Mn/Ca as bottom-water hypoxia proxy: an assessment of Nonionella stella in the Santa Barbara Basin, USA. Paleoceanography and Paleoclimatology, 36(11), (2021): e2020PA004167, https://doi.org/10.1029/2020PA004167.
    Beschreibung: Hypoxia is of increasing concern in marine areas, calling for a better understanding of mechanisms leading to decreasing dissolved oxygen concentrations ([O2]). Much can be learned about the processes and implications of deoxygenation for marine ecosystems using proxy records from low-oxygen sites, provided proxies, such as the manganese (Mn) to calcium (Ca) ratio in benthic foraminiferal calcite, are available and well calibrated. Here we report a modern geochemical data set from three hypoxic sites within the Santa Barbara Basin (SBB), USA, where we study the response of Mn/Caforam in the benthic foraminifer Nonionella stella to variations in sedimentary redox conditions (Mn, Fe) and bottom-water dissolved [O2]. We combine molecular species identification by small subunit rDNA sequencing with morphological characterization and assign the SBB N. stella used here to a new phylotype (T6). Synchrotron-based scanning X-ray fluorescence (XRF) imaging and Secondary Ion Mass Spectrometry (SIMS) show low Mn incorporation (partition coefficient DMn 〈 0.05) and limited proxy sensitivity of N. stella, at least within the range of dissolved [O2] (2.7–9.6 μmol/l) and Mnpore-water gradients (2.12–21.59 μmol/l). Notably, even though intra- and interspecimen Mn/Ca variability (33% and 58%, respectively) was only partially controlled by the environment, Mn/Caforam significantly correlated with both pore-water Mn and bottom-water [O2]. However, the prevalent suboxic bottom-water conditions and limited dissolved [O2] range complicate the interpretation of trace-elemental trends. Additional work involving other oxygenation proxies and samples from a wider oxygen gradient should be pursued to further develop foraminiferal Mn/Ca as an indicator for hypoxic conditions.
    Beschreibung: We acknowledge funding from the Swedish Research Council VR (grant numbers 2017-04190 and 2017-00671), the Crafoord Foundation, and the Royal Physiographic Society in Lund, Sweden. Shiptime provided by US NSF IOS 1557430. We acknowledge SOLEIL for provision of synchrotron radiation facilities and the beamline NANOSCOPIUM (proposal number 20181115). The synchrotron-based experiments were supported by CALIPSOplus under the EU Framework Programme for Research and Innovation HORIZON 2020 (grant agreement 730872). The SIMS analyses were jointly supported by the Swedish Museum of Natural History and Swedish Research Council. This is NordSIMS contribution No. 694. J. M. Bernhard and C. M. Hansel also acknowledge funding from the US National Science Foundation (IOS 1557430).
    Schlagwort(e): Benthic foraminifera ; Deoxygenation ; Micro-analytical techniques ; Mn/Ca ; Proxy calibration
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2022-10-26
    Beschreibung: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Walsh, A. N., Reddy, C. M., Niles, S. F., McKenna, A. M., Hansel, C. M., & Ward, C. P. Plastic formulation is an emerging control of its photochemical fate in the ocean. Environmental Science & Technology, 55(18), (2021): 12383–12392, https://doi.org/10.1021/acs.est.1c02272.
    Beschreibung: Sunlight exposure is a control of long-term plastic fate in the environment that converts plastic into oxygenated products spanning the polymer, dissolved, and gas phases. However, our understanding of how plastic formulation influences the amount and composition of these photoproducts remains incomplete. Here, we characterized the initial formulations and resulting dissolved photoproducts of four single-use consumer polyethylene (PE) bags from major retailers and one pure PE film. Consumer PE bags contained 15–36% inorganic additives, primarily calcium carbonate (13–34%) and titanium dioxide (TiO2; 1–2%). Sunlight exposure consistently increased production of dissolved organic carbon (DOC) relative to leaching in the dark (3- to 80-fold). All consumer PE bags produced more DOC during sunlight exposure than the pure PE (1.2- to 2.0-fold). The DOC leached after sunlight exposure increasingly reflected the 13C and 14C isotopic composition of the plastic. Ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry revealed that sunlight exposure substantially increased the number of DOC formulas detected (1.1- to 50-fold). TiO2-containing bags photochemically degraded into the most compositionally similar DOC, with 68–94% of photoproduced formulas in common with at least one other TiO2-containing bag. Conversely, only 28% of photoproduced formulas from the pure PE were detected in photoproduced DOC from the consumer PE. Overall, these findings suggest that plastic formulation, especially TiO2, plays a determining role in the amount and composition of DOC generated by sunlight. Consequently, studies on pure, unweathered polymers may not accurately represent the fates and impacts of the plastics entering the ocean.
    Beschreibung: Funding was provided by the Seaver Institute, the Gerstner Family Foundation, Woods Hole Oceanographic Institution, and the National Science Foundation Graduate Research Fellowship Program (A.N.W.). The Ion Cyclotron Resonance user facility at the National High Magnetic Field Laboratory is supported by the National Science Foundation Division of Chemistry and Division of Materials Research through DMR-1644779 and the State of Florida.
    Schlagwort(e): Plastic pollution ; Marine debris ; Additives ; Dissolved organic carbon ; Photochemical oxidation ; FT-ICR-MS ; Titanium dioxide
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...