ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Active faults  (1)
  • Calabrian Arc, Tyrrhenian Sea, Subduction-induced mantle flow, STEP fault, slab tearing, flat-topped seamount  (1)
  • 1
    Publication Date: 2021-02-03
    Description: Volcanic-Intrusive complexes often formed along lateral slab-edges as a consequence of subduction-induced mantle flow. We investigate this process in the southern Tyrrhenian Sea by integrating multibeam bathymetry, seismic-reflection data, regional magnetic anomalies data, and seismological data. The interpretation of the data highlights the presence of magmatic intrusions that locally reach the seafloor forming volcanic edifices. Chimneys, lava flows, and laccoliths are observed beneath and surrounding the volcanoes. The emplacement and cooling of the magma occurred during the Brunhes Chron. The volcanoes are not active even if the hydrothermal activity occurs. The volcanic-intrusive complex can be subdivided in a western domain (Diamante and Enotrio seamounts) where strike-slip transpressional faults deform the volcanic edifices, and an eastern domain (Ovidio volcanic seamounts) characterized by flat-topped volcanic edifices. The flat-topped morphology is the result of the interplay between volcanism, erosion, sedimentation and sea-level change. The Ovidio volcanic seamounts formed in an area that experienced at least 60 m of subsidence. Magnetic signatures over the northern side of the Ovidio and Diamante seamounts highlight the presence of a deep-rooted, magnetized feeding system remnant. Volcanic edifices extend above a magma feeding system, characterized by low Vp/Vs ratios. The Diamante-Enotrio-Ovidio volcanic-intrusive complex formed as a consequence of the ascent of subduction-induced mantle flow originated in the northern-western edge of the retreating Ionian slab. We speculate that the magma ascent was controlled by a strike-slip deformation belt, which accommodated the bulk of the shear strain resulting from the formation of a roughly E-W trending, Subduction-Transform Edges Propagator fault.
    Description: Published
    Description: 2581–2605
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: JCR Journal
    Keywords: Calabrian Arc, Tyrrhenian Sea, Subduction-induced mantle flow, STEP fault, slab tearing, flat-topped seamount
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-05-09
    Description: The integrated interpretation of high-resolution multibeam bathymetry, seismic profiles and backscatter data in the S. Eufemia Gulf (SEG; Calabro-Tyrrhenian continental margin, south-eastern Tyrrhenian Sea) documents the relationship between postglacial fault activity and morpho-sedimentary processes. Three systems of active normal faults that affect the seafloor or the shallow subsurface, have been identified: 1) the S. Eufemia fault system located on the continental shelf with fault planes mainly oriented N26E-N40E; 2) the offshore fault system that lies on the continental slope off Capo Suvero with fault planes mainly oriented N28E-N60E; 3) the Angitola Canyon fault system located on the seafloor adjacent to the canyon having fault planes oriented N60E- N85E. The faults produce a belt of linear escarpments with vertical displacement varying from a few decimeters to about 12 m. One of the most prominent active structures is the fault F1 with the highest fault length (about 9.5 km). Two main segments of this fault are identified: a segment characterised by seafloor deformation with metric slip affecting Holocene deposits; a segment characterised by folding of the seafloor. A combined tectono- stratigraphic model of an extensional fault propagation fold is proposed here to explain such different deformation. In addition to the seabed escarpments produced by fault deformation, in the SEG, a strong control of fault activity on recent sedimentary processes is clearly observed. For example, canyons and channels frequently change their course in response to their interaction with main tectonic structures. Moreover, the upper branch of the Angitola Canyon shows straight flanks determined by fault scarps. Tectonics also determined different sediment accumulation rates and types of sedimentation (e.g., the accumulation of hanging wall turbidite deposits and the development of contourite deposits around the Maida Ridge). Furthermore, the distribution of landslides is often connected to main fault scarps and fluids are locally confined in the hanging wall side of faults and can escape at the seabed, generating pockmarks aligned along their footwall.
    Description: Published
    Description: 108775
    Description: OST2 Deformazione e Hazard sismico e da maremoto
    Description: JCR Journal
    Keywords: High-resolution mapping ; Active faults ; Submarine landslides ; Tectonic geomorphology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...