ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Acoustics  (2)
Collection
Keywords
Years
  • 1
    Publication Date: 2019-07-20
    Description: The perpendicular interaction of a streamwise vortex with an infinite span helicopter blade was modeled experimentally in incompressible flow. Three-component velocity and turbulence measurements were made using a sub-miniature four sensor hot-wire probe. Vortex core parameters (radius, peak tangential velocity, circulation, and centerline axial velocity deficit) were determined as functions of blade-vortex separation, streamwise position, blade angle of attack, vortex strength, and vortex size. The downstream development of the flow shows that the interaction of the vortex with the blade wake is the primary cause of the changes in the core parameters. The blade sheds negative vorticity into its wake as a result of the induced angle of attack generated by the passing vortex. Instability in the vortex core due to its interaction with this negative vorticity region appears to be the catalyst for the magnification of the size and intensity of the turbulent flowfield downstream of the interaction. In general, the core radius increases while peak tangential velocity decreases with the effect being greater for smaller separations. These effects are largely independent of blade angle of attack; and if these parameters are normalized on their undisturbed values, then the effects of the vortex strength appear much weaker. Two theoretical models were developed to aid in extending the results to other flow conditions. An empirical model was developed for core parameter prediction which has some rudimentary physical basis, implying usefulness beyond a simple curve fit. An inviscid flow model was also created to estimate the vorticity shed by the interaction blade, and to predict the early stages of its incorporation into the interacting vortex.
    Keywords: Acoustics
    Type: NASA-CR-200159 , NAS 1.26:200159
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: Work was performed under this grant with a view to providing the experimental and computational results needed to improve the prediction of broadband stator noise in large bypass ratio aircraft engines. The central hypothesis of our study was that a large fraction of this noise was generated by the fan tip leakage vortices. More specifically, that these vortices are a significant component of the fan wake turbulence and they contain turbulent eddies of a type that can produce significant broadband noise. To test this hypothesis we originally proposed experimental work and computations with the following objectives: (1) to build a large scale two-dimensional cascade with a tip gap and a stationary endwall that, as far as possible, simulates the fan tip geometry, (2) to build a moving endwall for use with the large scale cascade, (3) to measure, in detail, the turbulence structure and spectrum generated by the blade wake and tip leakage vortex, for both endwall configurations, (4) to use the CFD to compute the flow and turbulence distributions for both the experimental configurations and the ADP fan, (5) to provide the experimental and CFD results for the cascades and the physical understanding gained from their study as a basis for improving the broadband noise prediction method. In large part these objectives have been achieved. The most important achievements and findings of our experimental and computational efforts are summarized below. The bibliography at the end of this report includes a list of all publications produced to date under this project. Note that this list is necessarily incomplete the task of publication (particularly in journal papers) continues.
    Keywords: Acoustics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...