ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-06-28
    Description: An acoustic sensor for measuring acoustic waves contained in fluid flow flowing over the sensor is introduced. The acoustic sensor reduces any unwanted self-noise associated with the flowing fluid by providing a nose cone having proper aerodynamic properties and by positioning the diaphragm of a microphone of the sensor at a location where any unwanted noise is at a relatively low level. The nose cone has a rounded, blunt or even sharp tip neither of which creates any major disturbances in the flowing fluid which it intercepts.
    Keywords: Acoustics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-19
    Description: The International Space Station (ISS) is a unique workplace environment for U.S. astronauts and Russian cosmonauts to conduct research and live for a period of six months or more. Noise has been an enduring environmental physical hazard that has been a challenge for the U.S. space program since before the Apollo era. Noise exposure in ISS poses significant risks to the crewmembers, such as; hearing loss (temporary or permanent), possible disruptions of crew sleep, interference with speech intelligibility and communication, possible interference with crew task performance, and possible reduction in alarm audibility. Acoustic measurements are made aboard ISS and compared to requirements in order to assess the acoustic environment to which the crewmembers are exposed. The purpose of this paper is to describe in detail the noise exposure monitoring program as well as an assessment of the acoustic dosimeter data collected to date. The hardware currently being used for monitoring the noise exposure onboard ISS will be discussed. Acoustic data onboard ISS has been collected since the beginning of ISS (Increment 1, November 2000). Noise exposure data analysis will include acoustic dosimetry logged data from crew-worn during work and sleep periods and also fixed-location measurements from Increment 1 to present day. Noise exposure levels (8-, 16- and 24-hr), LEQ, will also be provided and discussed in this paper. Discussions related to hearing protection will also be included. Future directions and recommendations for the noise exposure monitoring program will be highlighted. This acoustic data is used to ensure a safe and healthy working and living environment for the crewmembers aboard the ISS.
    Keywords: Acoustics
    Type: JSC-CN-22214 , 41st International Conference on Environmental Systems; Jul 11, 2011 - Jul 21, 2011; Portland, OR; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-19
    Description: Controlling cabin acoustic noise levels in the Crew Module (CM) of the Orion spacecraft is critical for adequate speech intelligibility, to avoid fatigue and to prevent any possibility of temporary and permanent hearing loss. A vibroacoustic model of the Orion CM cabin has been developed using Statistical Energy Analysis (SEA) to assess compliance with acoustic Constellation Human Systems Integration Requirements (HSIR) for the on-orbit mission phase. Cabin noise in the Orion CM needs to be analyzed at the vehicle-level to assess the cumulative acoustic effect of various Orion systems at the crewmember's ear. The SEA model includes all major structural and acoustic subsystems inside the CM including the Environmental Control and Life Support System (ECLSS), which is the primary noise contributor in the cabin during the on-orbit phase. The ECLSS noise sources used to excite the vehicle acoustic model were derived using a combination of established empirical predictions and fan development acoustic testing. Baseline noise predictions were compared against acoustic HSIR requirements. Key noise offenders and paths were identified and ranked using noise transfer path analysis. Parametric studies were conducted with various acoustic treatment packages in the cabin to reduce the noise levels and define vehicle-level mass impacts. An acoustic test mockup of the CM cabin has also been developed and noise treatment optimization tests were conducted to validate the results of the analyses.
    Keywords: Acoustics
    Type: JSC-CN-21896 , 17th AIAA/CEAS Aeroacoustics Conference; Jun 06, 2011 - Jun 08, 2011; Portland, OR; United States|32nd AIAA Aeroacoustics Conference; Jun 06, 2011 - Jun 08, 2011; Portland, OR; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Acoustics
    Type: JSC-CN-37440 , International Association for the Advancement of Space Safety; Sep 02, 2016; Noordwijk; Netherlands
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: The International Space Station (ISS) is a unique workplace environment for U.S. astronauts and Russian cosmonauts to conduct research and live for a period of six months or more. Noise has been an enduring environmental physical hazard that has been a challenge for the U.S. space program since before the Apollo era. Noise exposure in ISS poses significant risks to the crewmembers, such as; hearing loss (temporary or permanent), possible disruptions of crew sleep, interference with speech intelligibility and communication, possible interference with crew task performance, and possible reduction in alarm audibility. Acoustic measurements were made onboard ISS and compared to requirements in order to assess the acoustic environment to which the crewmembers are exposed. The purpose of this paper is to describe in detail the noise exposure monitoring program as well as an assessment of the acoustic dosimeter data collected to date. The hardware currently being used for monitoring the noise exposure onboard ISS will be discussed. Acoustic data onboard ISS has been collected since the beginning of ISS (Increment 1, November 2001). Noise exposure data analysis will include acoustic dosimetry logged data from crew-worn dosimeters during work and sleep periods and also fixed-location measurements from Increment 1 to present day. Noise exposure levels (8-, 16- and 24-hr), LEQ, will also be provided and discussed in this paper. Future directions and recommendations for the noise exposure monitoring program will be highlighted. This acoustic data is used to ensure a safe and healthy working and living environment for the crewmembers onboard the ISS.
    Keywords: Acoustics
    Type: JSC-CN-24099 , 41st International Conference on Environmental Systems; Jul 17, 2011 - Jul 21, 2011; Portland, OR; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-19
    Description: Acoustic modeling can be used to identify key noise sources, determine/analyze sub-allocated requirements, keep track of the accumulation of minor noise sources, and to predict vehicle noise levels at various stages in vehicle development, first with estimates of noise sources, later with experimental data. This paper describes the implementation of acoustic modeling for design purposes by incrementally increasing model fidelity and validating the accuracy of the model while predicting the noise of sources under various conditions. During FY 07, a simple-geometry Statistical Energy Analysis (SEA) model was developed and validated using a physical mockup and acoustic measurements. A process for modeling the effects of absorptive wall treatments and the resulting reverberation environment were developed. During FY 08, a model with more complex and representative geometry of the Orion Crew Module (CM) interior was built, and noise predictions based on input noise sources were made. A corresponding physical mockup was also built. Measurements were made inside this mockup, and comparisons were made with the model and showed excellent agreement. During FY 09, the fidelity of the mockup and corresponding model were increased incrementally by including a simple ventilation system. The airborne noise contribution of the fans was measured using a sound intensity technique, since the sound power levels were not known beforehand. This is opposed to earlier studies where Reference Sound Sources (RSS) with known sound power level were used. Comparisons of the modeling result with the measurements in the mockup showed excellent results. During FY 10, the fidelity of the mockup and the model were further increased by including an ECLSS (Environmental Control and Life Support System) wall, associated closeout panels, and the gap between ECLSS wall and mockup wall. The effect of sealing the gap and adding sound absorptive treatment to ECLSS wall were also modeled and validated.
    Keywords: Acoustics
    Type: JSC-CN-22307 , International Academy of Astronautics: Humans in Space Symposium; Apr 11, 2011 - Apr 15, 2011; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-18
    Description: When making noise measurements of sound sources in flow using microphones immersed in an air stream or wind tunnel, the factor limiting the dynamic range of the measurement is, in many cases, the noise caused by the flow over the microphone. To lower this self-noise, and to protect the microphone diaphragm, an aerodynamic microphone forebody is usually mounted on the tip of the omnidirectional microphone. The microphone probe is then pointed into the wind stream. Even with a microphone forebody, however, the self-noise persists, prompting further research in the area of microphone forebody design for flow-induced self-noise reduction. The magnitude and frequency characteristics of in-flow microphone probe self-noise is dependent upon the exterior shape of the probe and on the level of turbulence in the onset flow, among other things. Several recent studies present new designs for microphone forebodies, some showing the forbodies' self-noise characteristics when used in a given facility. However, these self-noise characteristics may change when the probes are used in different facilities. The present paper will present results of an experimental investigation to determine an empirical relationship between flow turbulence and self-noise levels for several microphone forebody shapes as a function of frequency. As a result, the microphone probe self-noise for these probes will be known as a function of freestream turbulence, and knowing the freestream turbulence spectra for a given facility, the probe self-noise can be predicted. Flow-induced microphone self-noise is believed to be related to the freestream. turbulence by three separate mechanisms. The first mechanism is produced by large scale, as compared to the probe size, turbulence which appears to the probe as a variation in the angle of attack of the freestream. flow. This apparent angle of attack variation causes the pressure along the probe surface to fluctuate, and at the location of the sensor orifice this fluctuating surface pressure is sensed by the diaphragm as noise. The second mechanism is caused by the convection of smaller sized turbulence, on the order of the probe cross-section, which passes nearby or strikes the probe giving rise to a fluctuating pressure at the sensor orifice. And, the third mechanism is related to fine scale turbulence through its effects on boundary layer growth and transition to a turbulent boundary layer. The method for relating the probe self-noise to the freestream turbulence will be based on the method of K. J. Young5 from Boeing, who developed the technique and presented flow noise results for a Bruel & Kjaer Type 0385, 1/4 inch (6.35 mm) nose cone. The experimental set-up used in the present experiment is similar to that of Young and is described in the present paper. Finally, flow noise predictions are made using the empirical correlations. These predictions are then compared with actual flow noise measurements made in the National Full-Scale Aerodynamics Complex 40- by 80-Foot Wind Tunnel at NASA Ames Research Center.
    Keywords: Acoustics
    Type: 1998 AIAA/CEAS Joint Acoustics Conference; Jun 02, 1998 - Jun 04, 1998; Toulouse; France
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-18
    Description: Acoustic analysis of aircraft components through small-scale experiments in wind tunnels requires in-flow acoustic measurements at high frequencies. This high frequency information is shifted to lower frequencies during the geometric scaling process. As a result, models of scale one tenth and smaller require frequency information of up to at least 100 kHz to resolve the midpoint of the full-scale equivalent audible range. Farfield acoustic measurements of frequencies higher than 100 kHz are prohibitively difficult to make due to the physical limitations of atmospheric propagation over large distances and the delicacy of the required instruments. Even measurements up to 100 kHz require special corrections and calibration procedures to maintain sufficient accuracy. In-flow microphone measurements at high frequencies require additional consideration due to the presence of the aerodynamic microphone forebody which protects the microphone diaphragm from flow impingement. The screen located at the forebody surface attenuates the high frequency acoustic waves and must be accounted for. The purpose of this paper is to present procedures for calibrating and correcting high frequency acoustic measurements to retain high accuracy. Specifically, this paper gives calibration procedures and examples of typical data for calibrating or correcting for five physical effects. These effects include the frequency response of the entire acoustic data acquisition system, intrusion of the microphone into the acoustic field, forebody screen attenuation, directionality of microphone forebody response and atmospheric absorption.
    Keywords: Acoustics
    Type: 1995 AIAA Aeroacoustics Conference; Jun 12, 1995 - Jun 15, 1995; Munich; Germany
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-12-31
    Description: No abstract available
    Keywords: Acoustics
    Type: JSC-E-DAA-TN74239 , Payload Operations Integration Working Group (POIWG); Oct 22, 2019 - Oct 24, 2019; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: Background noise in both open-jet and closed wind tunnels adversely affects the signal-to-noise ratio of acoustic measurements. To measure the noise of increasingly quieter aircraft models, the background noise will have to be reduced by physical means or through signal processing. In a closed wind tunnel, such as the NASA Ames 40- by 80- Foot Wind Tunnel, the principle background noise sources can be classified as: (1) fan drive noise; (2) microphone self-noise; (3) aerodynamically induced noise from test-dependent hardware such as model struts and junctions; and (4) noise from the test section walls and vane set. This paper describes the steps taken to minimize the influence of each of these background noise sources in the 40 x 80.
    Keywords: Acoustics
    Type: 1995 CEAS/AIAA Aeroacoustics Conference; Jun 12, 1995 - Jun 15, 1995; Munich; Germany
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...