ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (11)
  • Aircraft Stability and Control  (4)
  • Space Sciences (General)  (4)
  • Acoustics  (3)
  • 1
    Publication Date: 2019-06-28
    Description: An aerodynamic and acoustic investigation was performed on two small-scale supersonic inlets to determine which inlet would be more suitable for a High Speed Civil Transport (HSCT) aircraft during approach and takeoff flight conditions. The comparison was made between an axisymmetric supersonic P inlet and a bifurcated two-dimensional supersonic inlet. The 1/14 scale model supersonic inlets were used in conjunction with a 4.1 in (10.4 cm) turbofan engine simulator. A bellmouth was utilized on each inlet to eliminate lip separation commonly associated with airplane engine inlets that are tested under static conditions. Steady state measurements of the aerodynamic flowfield and acoustic farfield were made in order to evaluate the aeroacoustic performance of the inlets. The aerodynamic results show the total pressure recovery of the two inlets to be nearly identical, 99% at the approach condition and 98% at the takeoff condition. At the approach fan speed (60% design speed), there was no appreciable difference in the acoustic performance of either inlet over the entire 0 deg to 110 deg farfield measurement sector. The inlet flow field results at the takeoff fan speed (88% design speed), show the average inlet throat Mach number for the P inlet (Mach 0.52) to be approximately 2 times that of the 2D inlet (Mach 0.26). The difference in the throat Mach number is a result of the smaller throughflow area of the P inlet. This reduced area resulted in a 'soft choking' of the P inlet which lowered the tone and overall sound pressure levels of the simulator in the forward sector by an average of 9 dB and 3 dB, respectively, when compared to the 2D inlet.
    Keywords: Acoustics
    Type: NASA/CR-96-206507 , NAS 1.26:206507
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-06-05
    Description: NASA is currently investigating a new concept of operations for the National Airspace System, designed to improve capacity while maintaining or improving current levels of safety. This concept, known as Distributed Air/Ground Traffic Management (DAG-TM), allows appropriately equipped autonomous aircraft to maneuver freely for flight optimization while resolving conflicts with other traffic and staying out of special use airspace and hazardous weather. While Airborne Separation Assurance System (ASAS) tools would normally allow pilots to resolve conflicts before they become hazardous, evaluation of system performance in sudden, near-term conflicts is needed in order to determine concept feasibility. If an acceptable safety level can be demonstrated in these situations, then operations may be conducted with lower separation minimums. An experiment was conducted in NASA Langley s Air Traffic Operations Lab to address issues associated with resolving near-term conflicts and the potential use of lower separation minimums. Sixteen commercial airline pilots flew a total of 32 traffic scenarios that required them to use prototype ASAS tools to resolve close range pop-up conflicts. Required separation standards were set at either 3 or 5 NM lateral spacing, with 1000 ft vertical separation being used for both cases. Reducing the lateral separation from 5 to 3 NM did not appear to increase operational risk, as indicated by the proximity to the intruder aircraft. Pilots performed better when they followed tactical guidance cues provided by ASAS than when they didn't follow the guidance. As air-air separation concepts are evolved, further studies will consider integration issues between ASAS and existing Airborne Collision Avoidance Systems (ACAS).These types of non-normal events will require the ASAS to provide effective alerts and resolutions prior to the time that an Airborne Collision Avoidance System (ACAS) would give a Resolution Advisory (RA). When an RA is issued, a pilot must take immediate action in order to avoid a potential near miss. The Traffic Alert and Collision Avoidance System (TCAS) II currently functions as an ACAS aboard commercial aircraft. Depending on the own aircraft s altitude, TCAS only issues RA s 15-35 seconds prior to the Closest Point of Approach (CPA). Prior to an RA, DAG-TM pilots operating autonomous aircraft must rely solely on ASAS for resolution guidance. An additional area of DAG-TM concept feasibility relates to a potential reduction in separation standards. Lower separation standards are likely needed in order to improve NAS efficiency and capacity. Current separation minimums are based in large part on the capabilities of older radar systems. Safety assessments are needed to determine the feasibility of reduced separation minimums. They will give strong consideration to surveillance system performance, including accuracy, integrity, and availability. Candidate surveillance systems include Automatic Dependent Surveillance-Broadcast (ADS-B) and multi-lateration systems. Considering studies done for Reduced Vertical Separation Minimums (RVSM) operations, it is likely that flight technical errors will also be considered. In addition to a thorough evaluation of surveillance system performance, a potential decision to lower the separation standards should also take operational considerations into account. An ASAS Safety Assessment study identified improper maneuvering in response to a conflict (due to ambiguous or improper resolution commands or a pilot s failure to comply with the resolution) as a potential safety risk. If near-term conflicts with lower separation minimums were determined to be more challenging for pilots, the severity of these risks could be even greater.
    Keywords: Aircraft Stability and Control
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: The growing demand for air travel is increasing the need for mitigating air traffic congestion and complexity problems, which are already at high levels. At the same time new surveillance, navigation, and communication technologies are enabling major transformations in the air traffic management system, including net-based information sharing and collaboration, performance-based access to airspace resources, and trajectory-based rather than clearance-based operations. The new system will feature different schemes for allocating tasks and responsibilities between the ground and airborne agents and between the human and automation, with potential capacity and cost benefits. Therefore, complexity management requires new metrics and methods that can support these new schemes. This paper presents metrics and methods for preserving trajectory flexibility that have been proposed to support a trajectory-based approach for complexity management by airborne or ground-based systems. It presents extensions to these metrics as well as to the initial research conducted to investigate the hypothesis that using these metrics to guide user and service provider actions will naturally mitigate traffic complexity. The analysis showed promising results in that: (1) Trajectory flexibility preservation mitigated traffic complexity as indicated by inducing self-organization in the traffic patterns and lowering traffic complexity indicators such as dynamic density and traffic entropy. (2)Trajectory flexibility preservation reduced the potential for secondary conflicts in separation assurance. (3) Trajectory flexibility metrics showed potential application to support user and service provider negotiations for minimizing the constraints imposed on trajectories without jeopardizing their objectives.
    Keywords: Aircraft Stability and Control
    Type: NF1676L-12165 , 11th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference; Sep 20, 2011 - Sep 22, 2011; Virginia Beach, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-19
    Description: It is generally accepted that field aligned electrons in the solar wind can follow field lines connected to Earth and precipitate in the polar ionosphere where they are known as polar rain. Few-hundred eV, field-aligned electrons of the solar wind "strahl" carry the interplanetary heat flux moving out from the sun and these electrons precipitate in either the northern or southern hemisphere depending on the magnetic field direction. These electrons produce enhanced polar rain in one hemisphere or the other although weaker polar rain is usually produced in the opposite hemisphere by whatever electrons are moving in the opposite direction. Although much evidence exists for this simple free entry mechanism, it has also long been known that there are spatial variations in the energies and intensities of the precipitating electrons. The present work compares electron distribution functions measured by the ACE spacecraft in the solar wind with those measured by the DMSP spacecraft at 800 km altitude over the polar cap. It is found that shifting the DMSP distribution functions in energy by amounts ranging from 10's to a few hundred eV produces quite good agreement with simultaneous ACE measurements. Over most of the polar cap this DMSP energy shift must be positive to achieve this agreement, suggesting the electrons have been decelerated by a field aligned potential as they move from the solar wind to low altitudes. The largest shifts occur on the nightside and on the dawn or dusk side, with the latter depending on the plasma convection pattern which is controlled by the orientation of the IMF. Nearer the cusp the shift is smaller or even negative. Since more massive tailward flowing magnetosheath ions are unable io follow the field lines into the magnetotail like the electrons, a field aligned potential is expected to develop to exclude low energy electrons and prevent an excessive charge imbalance. Such a potential would also produce the deceleration of those electrons that reach low altitudes. This improved understanding of polar rain should increase the utility of polar rain measurements as a diagnostic of the magnetosphere magnetic field configuration.
    Keywords: Space Sciences (General)
    Type: 2007 Fall AGU Meeting; Dec 09, 2007 - Dec 15, 2007; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: Next Generation X-Ray Optics (NGXO) team at the Goddard Space Flight Center (GSFC) has been developing a new silicon-based grazing incidence mirror technology for future high resolution x-ray astronomical missions. Recently, the GSFC team completed the construction of first few mirror modules that contain one pair of mirrors. One of the mirror pairs was tested in GSFC 600-m long beamline facility and Panter (Neuried, Germay) 120-m long x-ray beamline facility. Both full aperture x-ray tests, Hartmann tests, and focal plane sweeps were completed. In this paper we present the data analysis process and compare the results from our models to measured x-ray centroid data, x-ray performance data, and out of focus images of the mirror pair.
    Keywords: Space Sciences (General)
    Type: GSFC-E-DAA-TN56866 , SPIE Astronomical Telescopes + Instrumentation; Jun 10, 2018 - Jun 15, 2018; Austin, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-19
    Description: ACE SWEPAM measurements of solar wind field-aligned electrons have been compared with simultaneous measurements of polar rain electrons precipitating over the polar cap and detected by DMSP spacecraft. Such comparisons allow investigation of cross-polar-cap gradients in the intensity of otherwise-steady polar rain. The generally good agreement of the distribution functions, f, from the two data sources confirms that direct entry of solar electrons along open field lines is indeed the cause of polar rain. The agreement between the data sets is typically best on the side of the polar cap with most intense polar rain but the DMSP f's in less intense regions can be brought into agreement with ACE measurements by shifting all energies by a fixed amounts that range from tens to several hundred eV. In most cases these shifts are positive which implies that field-aligned potentials of these amounts exist on polar cap field lines which tend to retard the entry of electrons and produce the observed gradients. These retarding potentials undoubtedly appear in order to prevent the entry of low-energy electrons and maintain charge quasi-neutrality that would otherwise be violated since most tailward flowing magnetosheath ions are unable to follow polar rain electrons down to the polar cap. In more limited regions near the boundary of the polar cap there is sometimes evidence for field-aligned potentials of the opposite sign that accelerate polar rain electrons. A solar electron burst is also studied and it is concluded that electrons from such bursts can enter the magnetotail and precipitate in the same manner as polar rain.
    Keywords: Space Sciences (General)
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-12
    Description: The Dynamic Multi-track Airways (DMA) Concept for Air Traffic Management (ATM) proposes a network of high-altitude airways constructed of multiple, closely spaced, parallel tracks designed to increase en-route capacity in high-demand airspace corridors. Segregated from non-airway operations, these multi-track airways establish high-priority traffic flow corridors along optimal routes between major terminal areas throughout the National Airspace System (NAS). Air traffic controllers transition aircraft equipped for DMA operations to DMA entry points, the aircraft use autonomous control of airspeed to fly the continuous-airspace airway and achieve an economic benefit, and controllers then transition the aircraft from the DMA exit to the terminal area. Aircraft authority within the DMA includes responsibility for spacing and/or separation from other DMA aircraft. The DMA controller is responsible for coordinating the entry and exit of traffic to and from the DMA and for traffic flow management (TFM), including adjusting DMA routing on a daily basis to account for predicted weather and wind patterns and re-routing DMAs in real time to accommodate unpredicted weather changes. However, the DMA controller is not responsible for monitoring the DMA for traffic separation. This report defines the mature state concept, explores its feasibility and performance, and identifies potential benefits. The report also discusses (a) an analysis of a single DMA, which was modeled within the NAS to assess capacity and determine the impact of a single DMA on regional sector loads and conflict potential; (b) a demand analysis, which was conducted to determine likely city-pair candidates for a nationwide DMA network and to determine the expected demand fraction; (c) two track configurations, which were modeled and analyzed for their operational characteristic; (d) software-prototype airborne capabilities developed for DMA operations research; (e) a feasibility analysis of key attributes in the concept design; (f) a near-term, transitional application of the DMA concept as a proving ground for new airborne technologies; and (g) conclusions. The analysis indicates that the operational feasibility of a national DMA network faces significant challenges, especially for interactions between DMAs and between DMA and non-DMA traffic. Provided these issues are resolved, sectors near DMAs could experience significant local capacity benefits.
    Keywords: Aircraft Stability and Control
    Type: NASA/TP-2008-215323 , L-19462
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: The research effort proposed for this NASA NRA is mainly experimental. In addition, Virginia Tech is working in partnership with Goodrich Aerospace, Aerostructures Group for the analytical development needed to support the experimental endeavor, i.e. model development, design, and system studies. In this project, Herschel-Quincke (HQ)liner technology experiments will be performed at the NASA Glenn Active Noise Control Fan (ANCF) facility. A schematic of both inlet and aft HQ-liner systems installed in the ANCF rig as well as a picture of the Glenn facility is shown. The main goal is to simultaneously test in both the inlet and bypass duct sections. The by-pass duct will have HQ-systems in both the inner and outer duct walls. The main advantages of performing tests at the ANCF facility are that the effect of the inlet HQ-system on the by-pass HQ-system and vice versa, can be accurately determined from the in-duct modal data. Another significant advantage is that it offers the opportunity to assess (on a common basis) the proposed noise reduction concept on the ANCF rig which in the past has been used for assessing other active and passive noise reduction strategies.
    Keywords: Acoustics
    Type: NASA/CR-2003-212097 , NAS 1.26:212097 , E-13750
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: Velocimetry measurements were obtained in three-stream jets at the NASA Glenn Research Center Nozzle Acoustics Test Rig using the time-resolved Doppler global velocimetry technique. These measurements afford exceptional frequency response, to 125 kHz bandwidth, in order to study the detailed dynamics of turbulence in developing shear flows. Mean stream-wise velocity is compared to measurements acquired using particle image velocimetry for validation. Detailed results for convective velocity distributions throughout an axisymmetric plume and the thick side of a plume with an offset third-stream duct are provided. The convective velocity results exhibit that, as expected, the eddy speeds are reduced on the thick side of the plume compared to the axisymmetric case. The results indicate that the time-resolved Doppler global velocimetry method holds promise for obtaining results valuable to the implementation and refinement of jet noise prediction methods being developed for three-stream jets.
    Keywords: Acoustics
    Type: GRC-E-DAA-TN29011 , AIAA Science and Technology Forum and Exposition (AIAA SciTech); Jan 04, 2016 - Jan 08, 2016; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: We present the latest result of a community-wide space weather model validation effort coordinated among the Community Coordinated Modeling Center (CCMC), NOAA Space Weather Prediction Center (SWPC), model developers, and the broader science community. Validation of geospace models is a critical activity for both building confidence in the science results produced by the models and in assessing the suitability of the models for transition to operations. Indeed, a primary motivation of this work is supporting NOAA/SWPCs effort to select a model or models to be transitioned into operations. Our validation efforts focus on the ability of the models to reproduce a regional index of geomagnetic disturbance, the local K-index. Our analysis includes six events representing a range of geomagnetic activity conditions and six geomagnetic observatories representing midlatitude and high-latitude locations. Contingency tables, skill scores, and distribution metrics are used for the quantitative analysis of model performance. We consider model performance on an event-by-event basis, aggregated over events, at specific station locations, and separated into high-latitude and midlatitude domains. A summary of results is presented in this report, and an online tool for detailed analysis is available at the CCMC.
    Keywords: Space Sciences (General)
    Type: GSFC-E-DAA-TN40879 , Space Weather (ISSN 1542-7390) (e-ISSN 1542-7390); 14; 7; 469-480
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...