ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Acoustic behavior  (1)
  • Acoustic wave transmission  (1)
  • 1
    Publikationsdatum: 2022-05-25
    Beschreibung: Author Posting. © Acoustical Society of America, 2012. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 131 (2012): 582-592, doi:10.1121/1.3662067.
    Beschreibung: Bottlenose dolphins (Tursiops sp.) depend on frequency-modulated whistles for many aspects of their social behavior, including group cohesion and recognition of familiar individuals. Vocalization amplitude and frequency influences communication range and may be shaped by many ecological and physiological factors including energetic costs. Here, a calibrated GPS-synchronized hydrophone array was used to record the whistles of bottlenose dolphins in a tropical shallow-water environment with high ambient noise levels. Acoustic localization techniques were used to estimate the source levels and energy content of individual whistles. Bottlenose dolphins produced whistles with mean source levels of 146.7±6.2 dB re. 1 μPa(RMS). These were lower than source levels estimated for a population inhabiting the quieter Moray Firth, indicating that dolphins do not necessarily compensate for the high noise levels found in noisy tropical habitats by increasing their source level. Combined with measured transmission loss and noise levels, these source levels provided estimated median communication ranges of 750 m and maximum communication ranges up to 5740 m. Whistles contained less than 17 mJ of acoustic energy, showing that the energetic cost of whistling is small compared to the high metabolic rate of these aquatic mammals, and unlikely to limit the vocal activity of toothed whales.
    Beschreibung: This study received support from the Danish Ph.D. School of Aquatic Sciences (SOAS), Aarhus University, DK, WWF Verdensnaturfonden and Aase & Ejnar Danielsens Foundation, the Siemens Foundation, the Faculty of Science at the University of Aarhus, DK, and the Danish Natural Science Foundation via a Steno scholarship and a logistics grant to PTM.
    Schlagwort(e): Acoustic arrays ; Acoustic noise ; Acoustic radiators ; Acoustic variables measurement ; Acoustic wave transmission ; Biocommunications ; Global Positioning System ; Hydrophones ; Underwater sound
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2023-03-08
    Beschreibung: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Ferguson, S., Jensen, F., Hyer, M., Noble, A., Apprill, A., & Mooney, T. Ground-truthing daily and lunar patterns of coral reef fish call rates on a US Virgin Island reef. Aquatic Biology, 31, (2022): 77–87, https://doi.org/10.3354/ab00755.
    Beschreibung: Coral reefs comprise some of the most biodiverse habitats on the planet. These ecosystems face a range of stressors, making quantifying community assemblages and potential changes vital to effective management. To understand short- and long-term changes in biodiversity and detect early warning signals of decline, new methods for quantifying biodiversity at scale are necessary. Acoustic monitoring techniques have proven useful in observing species activities and biodiversity on coral reefs through aggregate approaches (i.e. energy as a proxy). However, few studies have ground-truthed these acoustic analyses with human-based observations. In this study, we sought to expand these passive acoustic methods by investigating biological sounds and fish call rates on a healthy reef, providing a unique set of human-confirmed, labeled acoustic observations. We analyzed acoustic data from Tektite Reef, St. John, US Virgin Islands, over a 2 mo period. A subset of acoustic files was manually inspected to identify recurring biotic sounds and quantify reef activity throughout the day. We found a high variety of acoustic signals in this soundscape. General patterns of call rates across time conformed to expectations, with dusk and dawn showing important and significantly elevated peaks in soniferous fish activity. The data reflected high variability in call rates across days and lunar phases. Call rates did not correspond to sound pressure levels, suggesting that certain call types may drive crepuscular trends in sound levels while lower-level critical calls, likely key for estimating biodiversity and behavior, may be missed by gross sound level analyses.
    Beschreibung: This research was funded by the National Science Foundation Biological Oceanography award 1536782. The experiments were conducted under National Park Service Scientific Research and Collecting Permits VIIS-2016-SCI-0017-20, and we thank the Park staff for their support.
    Schlagwort(e): Marine protected area ; Soundscape ; Noise ; Biodiversity ; Acoustic behavior ; Monitoring ; Tropics
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...