ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Acetylene reduction assay (ARA)  (2)
  • Gliricidia sepium  (2)
  • 1
    ISSN: 1432-0789
    Keywords: 15N ; N2 fixation ; Rhizosphere ; Sorghum bicolor ; Pennisetum americanum ; Acetylene reduction assay (ARA)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary In a series of short-term experiments root systems of young sorghum and millet plants inoculated with N2-fixing bacteria were exposed to 15N2-enriched atmospheres for 72 h. The plants were grown in a normal atmosphere for up to 22 days after the end of the exposure to allow them to take up the fixed N2. Environmental conditions and genotypes of sorghum and millet were selected to maximise N2-fixation in the rhizosphere. Detectable amounts of fixed N (〉 16 μg/plant) were rapidly incorporated into sorghum plants grown in a sand/farmyard manure medium, but measurable fixation was found on only one occasion in plants grown in soil. N2 fixation was detectable in some experiments with soil-grown millet plants but the amounts were small (2–4 μg/plant) and represented less than 1 % of plant N accumulated over the same period. In many cases there was no detectable 15N2 incorporation despite measurable increases in ethylene concentration found during an acetylene reduction assay.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 13 (1992), S. 39-44 
    ISSN: 1432-0789
    Keywords: Molybdenum ; N2 fixation ; Phaseolus vulgaris L. ; Root nodules ; Flowing solution culture ; Acetylene reduction assay (ARA)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Plants grown from seed with high (1.5–7.3 μg Mo seed-1) and low (0.07–1.4 μg Mo seed-1) Mo contents were grown in the presence and absence of Mo in growth media (perlite) or in a flowing-solution culture, in a controlled environment. Neither the high (1.5 μg Mo seed-1) nor the low (0.1 μg Mo seed-1) Mo content in seed from a small-seeded genotype (BAT 1297) was able to prevent Mo deficiency (reduced shoot, root and nodule dry weight, N2 fixation and seed production) in growth media without an external supply of Mo, whereas both the high (7.3 μg Mo seed-1) and the low (0.07 μg Mo seed-1) contents in seed were able to prevent Mo deficiency in a large-seeded genotype (Canadian Wonder). Responses to Mo treatment by the Two genotypes were inconsistent between the growth media and solution culture experiments. Seed with a large Mo content (3.5 μg Mo seed-1) from the Canadian Wonder genotype was unable to prevent Mo deficiency (reduced shoot and nodule dry weight and N2-fixation) in a solution culture without an external source of Mo, whereas both the large (1.7 μg Mo seed-1) and the small (0.13 μg Mo seed-1) contents in seed prevented a deficiency in BAT 1297. Growing plants from seed with a small Mo content, without additional Mo, reduced the seed Mo content by 83–85% and seed production by up to 38% in both genotypes. Changes in seed size and increases in shoot, root and nodule dry weight occurred, but varied with the genotype and growth conditions. These effects were also observed in some cases where plants were grown with additional Mo, demonstrating that the amount of Mo in the seed sown can influence plant nutrition irrespective of the external Mo supply. Nodule dry weight, total N content of shoots and seed production were improved by using seed with a small Mo content (1.64–3.57 μg Mo seed-1) on acid tropical soils in Northern Zambia. Plants of both the large- and small-seeded genotypes grown from seed with a small Mo content (〈1.41 μg Mo seed-1) had a smaller nodule weight, accumulated less N and produced less seed. The viability of seed with a small Mo content was lower (germination up to 50% less) than that of seed with a large Mo content.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-5036
    Keywords: Calliandra calothyrsus ; Gliricidia sepium ; leaching ; lignin ; mineralization rate constant ; polyphenois ; protein-binding capacity ; leaching ; 15N nitrogen recovery
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The effect of N supply on the quality of Calliandra calothyrsus and Gliricidia sepium prunings was studied in a glasshouse over a 7-month growing period. Increasing the concentration of N supplied from 0.625 to 10.0 mM NO3-N resulted in increased N concentration but decreased polyphenol concentration, protein-binding capacity and C:N ratio of prunings from both species. Lignin concentration was not consistently altered by the N treatment. Mineralization of N from the prunings was measured over a 14-week period under controlled leaching and non-leaching conditions. The results indicated a strong interaction between legume species and concentration of N supply in their influence on N mineralization of the prunings applied to the soil. Differences in the %N mineralized were dictated by the quality of the prunings. The (lignin + polyphenol):N ratio was the pruning quality factor which could be used most consistently and accurately to predict N mineralization of the legume prunings incubated under leaching conditions, and the relationship was best described by a linear regression. Under non-leaching conditions, however, the protein-binding capacity appeared to be the most important parameter in determining the patterns of N release from the prunings studied. The relationship between the N mineralization rate constant and the protein-binding capacity was best described by a negative exponential function, y=0.078 exp(−0.0083x). The present study also indicated that the release of N from legume prunings containing a relatively high amount of polyphenol could be enhanced by governing the N availability conditions under which the plant is grown, for example whether or not it is actively fixing nitrogen. Estimates of pruning N mineralization after 14 weeks with the difference method averaged 6% (leaching conditions) and 22% (nonleaching conditions) more than with the 15N method for all legume prunings studied. The recovery of pruning by maize (4–38%) was well correlated with the % pruning N mineralized suggesting that incubation data closely reflect the pruning N value for a given catch crop under non-leaching conditions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1573-5036
    Keywords: Calliandra calothyrsus ; Gliricidia sepium ; Leucaena leucocephala ; lignin ; microbial biomass ; 15N recovery ; Peltophorum dasyrrachis ; polyphenols ; priming effect ; protein binding capacity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Nitrogen recovery from 15N-labelled prunings of Gliricidia sepium, Peltophorum dasyrrachis, Calliandra calothyrsus and Leucaena leucocephala, each of two different chemical qualities, was followed over three cropping cycles in a growth room. Half of the pots of each treatment received a further addition of unlabelled pruning material, from the same species as that previously applied, before the second and third crop cycle. The cumulative maize total N accumulation revealed the largest benefit from N rich, low lignin and polyphenols Gliricidia prunings followed by Leucaena, Calliandra and Peltophorum. Cumulative N recovery measured using 15N over the three crop cycles ranged from 9% from Calliandra prunings to 44% from Gliricidia prunings. The vast majority of this N was recovered during the first crop cycle which agreed well with estimates using the N difference method. Recoveries in the second and third crops ranged from 0.4–5% (15N method) and 6–14% (N difference method) of the N initially applied. The protein binding capacity of polyphenols was the best predictor of N recovery at both initial and later crop cycles. Treatments which led to a large N recovery initially, continued to provide greater N benefits in subsequent cycles although with increasing harvest time this trend decreased. Thus, there was no compensation in initial N release from low quality prunings at later harvests and the agronomic implications of this are discussed. Addition of unlabelled Gliricidia prunings before the second and third cycle led to a positive apparent priming effect on previously applied 15N labelled prunings. By contrast, repeated additions of Peltophorum residues, rich in lignin and active polyphenols, resulted in a reduced recovery of initially applied pruning-15N. However, the maximum positive or negative effects on recovery of pruning N amounted to less than 2% recovery of the initial amount of N added over 14 weeks. Thus the scope for regulation of N release from tree prunings during these later stages of decomposition appears to be limited.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...