ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: © The Author(s), 2016. This is the author's version of the work and is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Marine Geology 385 (2017): 114-130, doi:10.1016/j.margeo.2016.10.007.
    Description: Multiple styles of failure, ranging from densely spaced, mass transport driven canyons to the large, slab-type slope failure of the Currituck Slide, characterize adjacent sections of the central U.S. Atlantic margin that appear to be defined by variations in geologic framework. Here we use regionally extensive, deep penetration multichannel seismic (MCS) profiles to reconstruct the influence of the antecedent margin physiography on sediment accumulation along the central U.S. Atlantic continental shelf-edge, slope, and uppermost rise from the Miocene to Present. These data are combined with highresolution sparker MCS reflection profiles and multibeam bathymetry data across the Currituck Slide complex. Pre-Neogene allostratigraphic horizons beneath the slope are generally characterized by low gradients and convex downslope profiles. This is followed by the development of thick, prograded deltaic clinoforms during the middle Miocene. Along-strike variations in morphology of a regional unconformity at the top of this middle Miocene unit appear to have set the stage for differing styles of mass transport along the margin. Areas north and south of the Currituck Slide are characterized by oblique margin morphology, defined by an angular shelf-edge and a relatively steep (〉8°), concave slope profile. Upper slope sediment bypass, closely spaced submarine canyons, and small, localized landslides confined to canyon heads and sidewalls characterize these sectors of the margin. In contrast, the Currituck region is defined by a sigmoidal geometry, with a rounded shelf-edge rollover and gentler slope gradient (〈6°). Thick (〉800 m), regionally continuous stratified slope deposits suggest the low gradient Currituck region was a primary depocenter for fluvial inputs during multiple sea level lowstands. These results imply that the rounded, gentle slope physiography developed during the middle Miocene allowed for a relatively high rate of subsequent sediment accumulation, thus providing a mechanism for compaction–induced overpressure that preconditioned the Currituck region for failure. Detailed examination of the regional geological framework illustrates the importance of both sediment supply and antecedent slope physiography in the development of large, potentially unstable depocenters along passive margins.
    Description: The U.S. Geological Survey, the U.S. Nuclear Regulatory Commission and Coastal Carolina University funded this research.
    Keywords: Submarine landslides ; Multichannel seismic data ; U.S. Atlantic margin ; Geomorphology ; Unconformity ; Sediment supply ; Stratigraphy ; Isopach maps ; Slope gradient ; Accommodation space
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 8 (2007): Q07005, doi:10.1029/2007GC001582.
    Description: New high-resolution airborne magnetic (HRAM) data along a 120-km-long section of the Dead Sea Transform in southern Jordan and Israel shed light on the shallow structure of the fault zone and on the kinematics of the plate boundary. Despite infrequent seismic activity and only intermittent surface exposure, the fault is delineated clearly on a map of the first vertical derivative of the magnetic intensity, indicating that the source of the magnetic anomaly is shallow. The fault is manifested by a 10–20 nT negative anomaly in areas where the fault cuts through magnetic basement and by a 〈5 nT positive anomaly in other areas. Modeling suggests that the shallow fault is several hundred meters wide, in agreement with other geophysical and geological observations. A magnetic expression is observed only along the active trace of the fault and may reflect alteration of magnetic minerals due to fault zone processes or groundwater flow. The general lack of surface expression of the fault may reflect the absence of surface rupture during earthquakes. The magnetic data also indicate that unlike the San Andreas Fault, the location of this part of the plate boundary was stable throughout its history. Magnetic anomalies also support a total left-lateral offset of 105–110 km along the plate boundary, as suggested by others. Finally, despite previous suggestions of transtensional motion along the Dead Sea Transform, we did not identify any igneous intrusions related to the activity of this fault segment.
    Description: The project was funded by U.S.-AID Middle Eastern Regional Cooperation grant TA-MOU-01-M21-012.
    Keywords: Fault zone width ; Dead Sea Fault ; Magnetic anomalies ; High-resolution airborne magnetic survey ; Arava Fault ; Shallow fault
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...