ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Life Sciences (General)  (33)
  • Acceleration tolerance  (1)
  • Vasoactive agents  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of comparative physiology 165 (1996), S. 518-526 
    ISSN: 1432-136X
    Keywords: Blood vessels ; Gravity ; Catecholamines ; Vasoactive agents ; Snake ; Elaphe obsoleta
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract The effects of vasoactive agonists on systemic blood vessels were examined with respect to anatomical location and gravity acclimation in the semi-arboreal snake, Elaphe Obsoleta. Major blood vessels were reactive to putative neurotransmitters, hormones or local factors in vessel specific patterns. Catecholamines, adenosine triphosphate, histamine and high potassium (80 mM) stimulated significantly greater tension per unit vessel mass in posterior than anterior arteries. Anterior vessels were significantly more sensitive to catecholamines than midbody and posterior vessels. Angiotensin II stimulated significantly greater tension in carotid artery than in midbody and posterior dorsal aorta. Arginine vasotocin strongly contracted the left and right aortic arches and anterior dorsal aorta. Veins were strongly contracted by catecholamines, high potassium and angiotensin II, but less so by adenosine triphosphate, arginine vasotocin and histamine. Precontracted vessels were relaxed by acetylcholine and sodium nitroprusside, but not by atrial natriuretic peptide or bradykinin. Chronic exposure of snakes to intermittent hypergravity stress (+1.5 Gz at tail) did not affect the majority of vessel responses. These data demonstrate that in vitro tension correlates with known patterns of sympathetic innervation and suggest that catecholamines, as well as other agonists, are important in mediating vascular responses to gravitational stresses in snakes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of comparative physiology 166 (1996), S. 241-253 
    ISSN: 1432-136X
    Keywords: Hypergravity ; Carotid blood flow ; Acceleration tolerance ; Cardiovascular acclimation ; Snake,Elaphe obsoleta
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract Cardiovascular functions were studied in semi-arboreal rat snakes (Elaphe obsoleta) following long-term, intermittent exposure to +1.5G z (head-totail acceleration) on a centrifuge. Snakes were held in a nearly straight position within horizontal plastic tubes during periods of centrifugation. Centrifugal acceleration, therefore, subjected snakes to a linear force gradient with the maximal force being experienced at the tail. Compared to non-centrifuged controls,G z-acceimated snakes showed greater increases of heart rate during head-up tilt or acceleration, greater sensitivity of arterial pressure to circulating catecholamines, higher blood levels of corticosterone, and higher blood ratios of prostaglandin F2α/prostaglandin E2. Cardiovascular tolerance to increased gravity during gradedG z acceleration was measured as the maximum (caudal) acceleration force at which carotid arterial blood flow became null. When such tolerances were adjusted for effects of body size and other continuous variables incorporated into an analysis of covariance, the difference between the adjusted mean values of control and acelimated snakes (2.37 and 2.84G z, respectively) corresponded closely to the 0.5G difference between the acelimationG (1.5) and Earth gravity (1.0). As in other vertebrates, cardiovascular tolerance toG z stress tended to be increased by acclimation, short body length, high arterial pressure, and comparatively large blood volume. Voluntary body movements were important for promoting carotid blood flow at the higher levels ofG z stress.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-24
    Description: A 26-year-old man presented with ipsilateral femur and ankle fractures. The patient was treated with interlocking nail of his femur fracture, followed by open reduction and internal fixation of his ankle fracture under tourniquet control. Postoperatively, the patient developed compartment syndrome of his thigh with elevated pressures, requiring decompressive fasciotomies. This case illustrates the possible complication of treating a femur fracture with intramedullary nailing and then immediately applying a tourniquet to treat an ipsilateral extremity fracture. Because of the complication with this patient, we feel the procedure should be staged, or a tourniquet should be avoided if possible.
    Keywords: Life Sciences (General)
    Type: Journal of orthopaedic trauma (ISSN 0890-5339); Volume 1; 1; 71-3
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-08-24
    Description: The morphological and physiological effects of 4 weeks of high-frequency electrical stimulation (1 h/day, 5 days/week) on cast-immobilized rabbit hindlimbs were investigated in the tibialis anterior muscle and peroneal nerve. In 2 out of 6 animals, high-frequency stimulation with immobilization caused muscle fiber death, internalization of muscle fiber nuclei, connective tissue proliferation, inflammatory response, altered fiber size distribution and variable staining intensities. The fast-twitch fibers were predominantly affected. Two of six peripheral nerves subjected to immobilization and stimulation showed severe damage. Tetanic forces were significantly reduced in the affected muscles. Therefore, the immobilization and high-frequency stimulation may be detrimental to myoneural structure and function and, thus, this combination of therapies should be applied conservatively.
    Keywords: Life Sciences (General)
    Type: Stereotactic and functional neurosurgery (ISSN 1011-6125); Volume 53; 4; 261-73
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-08-24
    Description: No abstract available
    Keywords: Life Sciences (General)
    Type: The Physiologist (ISSN 0031-9376); Volume 35; 1 Suppl; S115-6
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-08-24
    Description: No abstract available
    Keywords: Life Sciences (General)
    Type: The Physiologist (ISSN 0031-9376); Volume 35; 1 Suppl; S184-5
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-08-24
    Description: No abstract available
    Keywords: Life Sciences (General)
    Type: The Physiologist (ISSN 0031-9376); Volume 35; 1 Suppl; S80-3
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-08-24
    Description: The purpose of this investigation was to determine whether ischemia, which reduces oxygenation in the extensor carpi radialis (ECR) muscle, causes a reduction in muscle force production. In eight subjects, muscle oxygenation (TO2) of the right ECR was measured noninvasively and continuously using near infrared spectroscopy (NIRS) while muscle twitch force was elicited by transcutaneous electrical stimulation (1 Hz, 0.1 ms). Baseline measurements of blood volume, muscle oxygenation and twitch force were recorded continuously, then a tourniquet on the upper arm was inflated to one of five different pressure levels: 20, 40, 60 mm Hg (randomized order) and diastolic (69 +/- 9.8 mm Hg) and systolic (106 +/- 12.8 mm Hg) blood pressures. Each pressure level was maintained for 3-5 min, and was followed by a recovery period sufficient to allow measurements to return to baseline. For each respective tourniquet pressure level, mean TO2 decreased from resting baseline (100% TO2) to 99 +/- 1.2% (SEM), 96 +/- 1.9%, 93 +/- 2.8%, 90 +/- 2.5%, and 86 +/- 2.7%, and mean twitch force decreased from resting baseline (100% force) to 99 +/- 0.7% (SEM), 96 +/- 2.7%, 93 +/- 3.1%, 88 +/- 3.2%, and 86 +/- 2.6%. Muscle oxygenation and twitch force at 60 mm Hg tourniquet compression and above were significantly lower (P 〈 0.05) than baseline value. Reduced twitch force was correlated in a dose-dependent manner with reduced muscle oxygenation (r = 0.78, P 〈 0.001). Although the correlation does not prove causation, the results indicate that ischemia leading to a 7% or greater reduction in muscle oxygenation causes decreased muscle force production in the forearm extensor muscle. Thus, ischemia associated with a modest decline in TO2 causes muscle fatigue.
    Keywords: Life Sciences (General)
    Type: Journal of orthopaedic research : official publication of the Orthopaedic Research Society (ISSN 0736-0266); Volume 19; 3; 436-40
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-08-24
    Description: Cardiovascular functions were studied in semi-arboreal rat snakes (Elaphe obsoleta) following long-term, intermittent exposure to +1.5 Gz (head-to-tail acceleration) on a centrifuge. Snakes were held in a nearly straight position within horizontal plastic tubes during periods of centrifugation. Centrifugal acceleration, therefore, subjected snakes to a linear force gradient with the maximal force being experienced at the tail. Compared to non-centrifuged controls, Gz-acclimated snakes showed greater increases of heart rate during head-up tilt or acceleration, greater sensitivity of arterial pressure to circulating catecholamines, higher blood levels of corticosterone, and higher blood ratios of prostaglandin F 2 alpha/prostaglandin E2. Cardiovascular tolerance to increased gravity during graded Gz acceleration was measured as the maximum (caudal) acceleration force at which carotid arterial blood flow became null. When such tolerances were adjusted for effects of body size and other continuous variables incorporated into an analysis of covariance, the difference between the adjusted mean values of control and acclimated snakes (2.37 and 2.84 Gz, respectively) corresponded closely to the 0.5 G difference between the acclimation G (1.5) and Earth gravity (1.0). As in other vertebrates, cardiovascular tolerance to Gz stress tended to be increased by acclimation, short body length, high arterial pressure, and comparatively large blood volume. Voluntary body movements were important for promoting carotid blood flow at the higher levels of Gz stress.
    Keywords: Life Sciences (General)
    Type: Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology (ISSN 0174-1578); Volume 166; 241-53
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: Bedrest studies of normal subjects provide opportunities to understand physiologic responses to supine posture and inactivity. Furthermore, head-down tilt has been a valuable procedure to investigate adaptation to microgravity and development of countermeasures to maintain the health and well-being of humans during space-flight. Recent bedrest experiments at NASA have ranged in duration from a few hours to 17 weeks. Acute studies of 6 degrees head-down tilt indicate that elevation of capillary blood pressure from 28 to 34 mm Hg and increased capillary perfusion in tissues of the head cause facial and intracranial edema. Intracranial pressure increases from 2 to 17 mm Hg going from upright posture to 6 degrees head-down tilt. Microvessels of the head have a low capacity to constrict and diminish local perfusion. Elevation of blood and tissue fluid pressures/flow in the head may also explain the higher headward bone density associated with long-term head-down tilt. These mechanistic studies of head-down tilt, along with a better understanding of the relative stresses involved with upright posture and lower body negative pressure, have facilitated development of suitable physiologic countermeasures to maintain astronaut health during microgravity. Presently no exercise hardware is available to provide a blood pressure gradient from head to feet in space. However, recent studies in our laboratory suggest that treadmill exercise using a graded lower-body compression suit and 100 mmHg lower body negative pressure provides equivalent or greater physiologic stress than similar upright exercise on Earth. Therefore, exercise within a lower body negative pressure chamber may provide a cost-effective and simple countermeasure to maintain the cardiovascular and neuro-musculoskeletal systems of astronauts during long-duration flight.
    Keywords: Life Sciences (General)
    Type: Acta physiologica Scandinavica. Supplementum (ISSN 0302-2994); Volume 616; 103-14
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...