ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Acanthochromis polyacanthus; Aerobic scope of oxygen; Alkalinity, total; Alkalinity, total, standard error; Amblyglyphidodon curacao; Animalia; Aragonite saturation state; Bicarbonate ion; Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Chordata; Coast and continental shelf; Comment; Containers and aquaria (20-1000 L or 〈 1 m**2); Factorial aerobic scope; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Glucose; Growth/Morphology; Haematocrit; Haemoglobin; Height; Identification; Laboratory experiment; Lactate; Length, standard; Mass; Mean corpuscular haemoglobin concentration; Nekton; OA-ICC; Ocean Acidification International Coordination Centre; Other; Other studied parameter or process; Oxygen uptake rate; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Partial pressure of carbon dioxide (water) at sea surface temperature (wet air), standard error; Pelagos; pH; pH, standard error; Potentiometric titration; Range; Registration number of species; Respiration; Salinity; Salinity, standard error; Single species; Slope; South Pacific; Species; Spectrophotometric; Speed, swimming, critical; Temperature, water; Temperature, water, standard error; Treatment; Tropical; Type; Uniform resource locator/link to reference; Width  (1)
  • Acanthochromis polyacanthus; Alkalinity, total; Alkalinity, total, standard deviation; Animalia; Aragonite saturation state; Bicarbonate ion; Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Chordata; Coast and continental shelf; Containers and aquaria (20-1000 L or 〈 1 m**2); Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Gene expression (incl. proteomics); Growth/Morphology; Identification; Laboratory experiment; Mass; Nekton; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; pH, standard deviation; Potentiometric; Potentiometric titration; Reads; Salinity; Salinity, standard deviation; Sample ID; Single species; South Pacific; Species, unique identification; Species, unique identification (Semantic URI); Species, unique identification (URI); Temperature, water; Temperature, water, standard deviation; Treatment; Tropical; Type  (1)
  • Acanthochromis polyacanthus; Alkalinity, total; Alkalinity, total, standard deviation; Animalia; Aragonite saturation state; Bicarbonate ion; Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Chordata; Coast and continental shelf; Containers and aquaria (20-1000 L or 〈 1 m**2); EXP; Experiment; Figure; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Gene expression; Gene expression (incl. proteomics); Gene name; Great_Barrier_Reef_OA; Laboratory experiment; Nekton; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; pH, standard deviation; Registration number of species; Salinity; Salinity, standard deviation; Single species; South Pacific; Species; Temperature, water; Temperature, water, standard deviation; Treatment; Tropical; Type; Uniform resource locator/link to reference  (1)
Collection
Keywords
Publisher
Years
  • 1
    Publication Date: 2024-03-15
    Description: Ocean acidification, resulting from increasing atmospheric carbon dioxide (CO2) emissions, can affect the physiological performance of some fishes. Most studies investigating ocean acidification have used stable pCO2 treatments based on open ocean predictions. However, nearshore systems can experience substantial spatial and temporal variations in pCO2. Notably, coral reefs are known to experience diel fluctuations in pCO2, which are expected to increase on average and in magnitude in the future. Though we know these variations exist, relatively few studies have included fluctuating treatments when examining the effects of ocean acidification conditions on coral reef species. To address this, we exposed two species of damselfishes, Amblyglyphidodon curacao and Acanthochromis polyacanthus, to ambient pCO2, a stable elevated pCO2 treatment, and two fluctuating pCO2 treatments (increasing and decreasing) over an 8 h period. Oxygen uptake rates were measured both while fish were swimming and resting at low-speed. These 8 h periods were followed by an exhaustive swimming test (Ucrit) and blood draw examining swimming metrics and haematological parameters contributing to oxygen transport. When A. polyacanthus were exposed to stable pCO2 conditions (ambient or elevated), they required more energy during the 8 h trial regardless of swimming type than fish exposed to either of the fluctuating pCO2 treatments (increasing or decreasing). These results were reflected in the oxygen uptake rates during the Ucrit tests, where fish exposed to fluctuating pCO2 treatments had a higher factorial aerobic scope than fish exposed to stable pCO2 treatments. By contrast, A. curacao showed no effect of pCO2 treatment on swimming or oxygen uptake metrics. Our results show that responses to stable versus fluctuating pCO2 differ between species – what is stressful for one species many not be stressful for another. Such asymmetries may have population- and community-level impacts under higher more variable pCO2 conditions in the future.
    Keywords: Acanthochromis polyacanthus; Aerobic scope of oxygen; Alkalinity, total; Alkalinity, total, standard error; Amblyglyphidodon curacao; Animalia; Aragonite saturation state; Bicarbonate ion; Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Chordata; Coast and continental shelf; Comment; Containers and aquaria (20-1000 L or 〈 1 m**2); Factorial aerobic scope; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Glucose; Growth/Morphology; Haematocrit; Haemoglobin; Height; Identification; Laboratory experiment; Lactate; Length, standard; Mass; Mean corpuscular haemoglobin concentration; Nekton; OA-ICC; Ocean Acidification International Coordination Centre; Other; Other studied parameter or process; Oxygen uptake rate; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Partial pressure of carbon dioxide (water) at sea surface temperature (wet air), standard error; Pelagos; pH; pH, standard error; Potentiometric titration; Range; Registration number of species; Respiration; Salinity; Salinity, standard error; Single species; Slope; South Pacific; Species; Spectrophotometric; Speed, swimming, critical; Temperature, water; Temperature, water, standard error; Treatment; Tropical; Type; Uniform resource locator/link to reference; Width
    Type: Dataset
    Format: text/tab-separated-values, 99314 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-03-15
    Description: Knowledge of adaptive potential is crucial to predicting the impacts of ocean acidification (OA) on marine organisms. In the spiny damselfish, Acanthochromis polyacanthus, individual variation in behavioural tolerance to elevated pCO2 has been observed and is associated with offspring gene expression patterns in the brain. However, the maternal and paternal contributions of this variation are unknown. To investigate parental influence of behavioural pCO2 tolerance, we crossed pCO2-tolerant fathers with pCO2-sensitive mothers and vice versa, reared their offspring at control and elevated pCO2 levels, and compared the juveniles' brain transcriptional programme. We identified a large influence of parental phenotype on expression patterns of offspring, irrespective of environmental conditions. Circadian rhythm genes, associated with a tolerant parental phenotype, were uniquely expressed in tolerant mother offspring, while tolerant fathers had a greater role in expression of genes associated with histone binding. Expression changes in genes associated with neural plasticity were identified in both offspring types: the maternal line had a greater effect on genes related to neuron growth while paternal influence impacted the expression of synaptic development genes. Our results confirm cellular mechanisms involved in responses to varying lengths of OA exposure, while highlighting the parental phenotype's influence on offspring molecular phenotype.
    Keywords: Acanthochromis polyacanthus; Alkalinity, total; Alkalinity, total, standard deviation; Animalia; Aragonite saturation state; Bicarbonate ion; Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Chordata; Coast and continental shelf; Containers and aquaria (20-1000 L or 〈 1 m**2); Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Gene expression (incl. proteomics); Growth/Morphology; Identification; Laboratory experiment; Mass; Nekton; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; pH, standard deviation; Potentiometric; Potentiometric titration; Reads; Salinity; Salinity, standard deviation; Sample ID; Single species; South Pacific; Species, unique identification; Species, unique identification (Semantic URI); Species, unique identification (URI); Temperature, water; Temperature, water, standard deviation; Treatment; Tropical; Type
    Type: Dataset
    Format: text/tab-separated-values, 4772 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Schunter, Celia; Welch, Megan J; Nilsson, Göran E; Rummer, Jodie L; Munday, Philip L; Ravasi, Timothy (2018): An interplay between plasticity and parental phenotype determines impacts of ocean acidification on a reef fish. Nature Ecology & Evolution, 2(2), 334-342, https://doi.org/10.1038/s41559-017-0428-8
    Publication Date: 2024-03-15
    Description: The impacts of ocean acidification will depend on the ability of marine organisms to tolerate, acclimate and eventually adapt to changes in ocean chemistry. Here, we use a unique transgenerational experiment to determine the molecular response of a coral reef fish to short-term, developmental and transgenerational exposure to elevated CO2, and to test how these responses are influenced by variations in tolerance to elevated CO2 exhibited by the parents. Within-generation responses in gene expression to end-of-century predicted CO2 levels indicate that a self-amplifying cycle in GABAergic neurotransmission is triggered, explaining previously reported neurological and behavioural impairments. Furthermore, epigenetic regulator genes exhibited a within-generation specific response, but with some divergence due to parental phenotype. Importantly, we find that altered gene expression for the majority of within-generation responses returns to baseline levels following parental exposure to elevated CO2 conditions. Our results show that both parental variation in tolerance and cross-generation exposure to elevated CO2 are crucial factors in determining the response of reef fish to changing ocean chemistry.
    Keywords: Acanthochromis polyacanthus; Alkalinity, total; Alkalinity, total, standard deviation; Animalia; Aragonite saturation state; Bicarbonate ion; Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Chordata; Coast and continental shelf; Containers and aquaria (20-1000 L or 〈 1 m**2); EXP; Experiment; Figure; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Gene expression; Gene expression (incl. proteomics); Gene name; Great_Barrier_Reef_OA; Laboratory experiment; Nekton; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; pH, standard deviation; Registration number of species; Salinity; Salinity, standard deviation; Single species; South Pacific; Species; Temperature, water; Temperature, water, standard deviation; Treatment; Tropical; Type; Uniform resource locator/link to reference
    Type: Dataset
    Format: text/tab-separated-values, 20862 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...