ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-0581
    Keywords: Abyssal Hills ; active fault zone ; East Pacific Rise ; faulting
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract Sea Beam bathymetry and SeaMARC II side-scan sonar data are used to constrain the width of the zone of active faulting (plate boundary zone) to be ∼90 km (∼0.8 Ma) wide along the East Pacific Rise 8° 30′ N – 10° 00′ N. Fault scarps, identified on the basis of contoured, shaded relief and slope intensity maps of bathymetry, are measured. These scarp measurements, used in conjunction with data from a separate near-axis study, show that both inward- and outward-facing fault scarps increase in height away from the ridge axis, reaching average heights of ∼100 m at 0.8±0.2 Ma, 45±10 km from the ridge axis. Beyond this distance, there is no significant increase in scarp height. Earlier studies had suggested that the width of the zone of active faulting for outward-dipping faults might be significantly narrower than for inward-dipping faults. A lower crustal decoupling zone between brittle crust and strong upper mantle is predicted to exist out to ∼20–200 km from the ridge based on previously published lithospheric models. Such a decoupling zone may explain why outward-dipping faults continue to be active as far off-axis as inward-dipping faults. If the width of the zone of active faulting is controlled by the width of a lower crustal decoupling zone, our observations predict an ∼90 km wide decoupling zone in the lower oceanic crust at this location.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...