ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Abrupt climate change  (1)
  • Attribution  (1)
  • Climate prediction  (1)
  • Decadal variability  (1)
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 42 (2015): 9942–9951, doi:10.1002/2015GL065948.
    Description: Extreme rainfall conditions in Australia during the 2010/2011 La Niña resulted in devastating floods claiming 35 lives, causing billions of dollars in damages, and far-reaching impacts on global climate, including a significant drop in global sea level and record terrestrial carbon uptake. Northeast Australian 2010/2011 rainfall was 84% above average, unusual even for a strong La Niña, and soil moisture conditions were unprecedented since 1950. Here we demonstrate that the warmer background state increased the likelihood of the extreme rainfall response. Using atmospheric general circulation model experiments with 2010/2011 ocean conditions with and without long-term warming, we identify the mechanisms that increase the likelihood of extreme rainfall: additional ocean warming enhanced onshore moisture transport onto Australia and ascent and precipitation over the northeast. Our results highlight the role of long-term ocean warming for modifying rain-producing atmospheric circulation conditions, increasing the likelihood of extreme precipitation for Australia during future La Niña events.
    Description: Australian Research Council (ARC); ARC Centre of Excellence for Climate System Science; ARC Laureate Fellowship program; Penzance and John P. Chase Memorial Endowed Funds; Ocean Climate Change Institute at WHOI
    Description: 2016-05-19
    Keywords: Ocean warming ; Precipitation;extremes ; Australia ; Attribution ; La Nina
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2016. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 29 (2016): 6201-6221, doi:10.1175/JCLI-D-15-0694.1.
    Description: Anomalous conditions in the tropical oceans, such as those related to El Niño–Southern Oscillation and the Indian Ocean dipole, have been previously blamed for extended droughts and wet periods in Australia. Yet the extent to which Australian wet and dry spells can be driven by internal atmospheric variability remains unclear. Natural variability experiments are examined to determine whether prolonged extreme wet and dry periods can arise from internal atmospheric and land variability alone. Results reveal that this is indeed the case; however, these dry and wet events are found to be less severe than in simulations incorporating coupled oceanic variability. Overall, ocean feedback processes increase the magnitude of Australian rainfall variability by about 30% and give rise to more spatially coherent rainfall impacts. Over mainland Australia, ocean interactions lead to more frequent extreme events, particularly during the rainy season. Over Tasmania, in contrast, ocean–atmosphere coupling increases mean rainfall throughout the year. While ocean variability makes Australian rainfall anomalies more severe, droughts and wet spells of duration longer than three years are equally likely to occur in both atmospheric- and ocean-driven simulations. Moreover, they are essentially indistinguishable from what one expects from a Gaussian white noise distribution. Internal atmosphere–land-driven megadroughts and megapluvials that last as long as ocean-driven events are also identified in the simulations. This suggests that oceanic variability may be less important than previously assumed for the long-term persistence of Australian rainfall anomalies. This poses a challenge to accurate prediction of long-term dry and wet spells for Australia.
    Description: This study was supported by the Australian Research Council (ARC) under ARC-DP1094784, ARC-DP-150101331, ARC-FL100100214, and funding for C.C.U. from the National Science Foundation under AGS-1602455 and the ARC Centre of Excellence for Climate System Science.
    Description: 2017-02-19
    Keywords: Circulation/ Dynamics ; Atmosphere-ocean interaction ; Atm/Ocean Structure/ Phenomena ; Drought ; Precipitation ; Physical Meteorology and Climatology ; Climate variability ; Forecasting ; Climate prediction ; Variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 47(22), (2020): e2020GL088692, doi:10.1029/2020GL088692.
    Description: Rapid increases in upper 700‐m Indian Ocean heat content (IOHC) since the 2000s have focused attention on its role during the recent global surface warming hiatus. Here, we use ocean model simulations to assess distinct multidecadal IOHC variations since the 1960s and explore the relative contributions from wind stress and buoyancy forcing regionally and with depth. Multidecadal wind forcing counteracted IOHC increases due to buoyancy forcing from the 1960s to the 1990s. Wind and buoyancy forcing contribute positively since the mid‐2000s, accounting for the drastic IOHC change. Distinct timing and structure of upper ocean temperature changes in the eastern and western Indian Ocean are linked to the pathway how multidecadal wind forcing associated with the Interdecadal Pacific Oscillation is transmitted and affects IOHC through local and remote winds. Progressive shoaling of the equatorial thermocline—of importance for low‐frequency variations in Indian Ocean Dipole occurrence—appears to be dominated by multidecadal variations in wind forcing.
    Description: This work was supported by the Alexander von Humboldt Foundation (CCU and SR), The Investment in Science Fund given primarily by WHOI Trustee and Corporation Members (CCU), James E. and Barbara V. Moltz Fellowship for climate‐related research (CCU), the ARC Centre of Excellence for Climate Extremes (CE170100023; CCU and MHE), ARC DP150101331 (CCU and MHE), and PW was supported through grant IndoArchipel from the Deutsche Forschungsgemeinschaft (DFG) as part of the Special Priority Program (SPP)‐1889”Regional Sea Level Change and Society” (SeaLevel).
    Description: 2021-04-26
    Keywords: Decadal variability ; Hiatus ; Indian Ocean ; Ocean heat content ; Ocean models ; Pacific Ocean
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 42 (2015): 10,382–10,390, doi:10.1002/2015GL066344.
    Description: North Atlantic late Pleistocene climate (60,000 to 11,650 years ago) was characterized by abrupt and extreme millennial duration oscillations known as Dansgaard-Oeschger (D-O) events. However, during the Last Glacial Maximum (LGM) 23,000 to 19,000 cal years ago (23 to 19 ka), no D-O events are observed in the Greenland ice cores. Our new analysis of the Greenland δ18O record reveals a switch in the stability of the climate system around 30 ka, suggesting that a critical threshold was passed. Climate system modeling suggests that low axial obliquity at this time caused vastly expanded sea ice in the Labrador Sea, shifting Northern Hemisphere westerly winds south and reducing the strength of meridional overturning circulation. The results suggest that these feedbacks tipped the climate system into full glacial conditions, leading to maximum continental ice growth during the LGM.
    Description: Australian Research Council
    Description: 2016-06-10
    Keywords: Late Pleistocene ; Abrupt climate change ; Geochronology ; Tipping point ; Meridional overturning circulation ; Greenland ice cores
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...