ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Abatus cavernosus; Acid-base regulation; Alkalinity, total; Alkalinity, total, standard deviation; Amphipneustes lorioli; Amphipneustes rostratus; Amphipneustes similis; Animalia; Antarctic; Aporocidaris eltaniana; Aragonite saturation state; Aragonite saturation state, standard deviation; Benthic animals; Benthos; Bicarbonate ion; Bicarbonate ion, standard deviation; Bransfield_Strait; Calcite saturation state; Calcite saturation state, standard deviation; Calculated; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate ion, standard deviation; Carbonate system computation flag; Carbon dioxide; Carbon dioxide, standard deviation; Coast and continental shelf; Coelomic fluid, alkalinity; Coelomic fluid, carbon, inorganic, dissolved; Coelomic fluid, pH; Coulometric titration; Ctenocidaris gigantea; DATE/TIME; Difference; Echinodermata; Event label; EXP; Experiment; Field observation; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); LATITUDE; LONGITUDE; Notocidaris gaussensis; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; pH, standard deviation; Polar; Potentiometric; Potentiometric titration; Salinity; Single species; Size; Species; Station label; Sterechinus antarcticus; Sterechinus neumayeri; Temperature, water; Weddell_Sea_OA; δ13C  (1)
  • Alkalinity, total; Animalia; Aragonite saturation state; Benthic animals; Benthos; Bicarbonate ion; Calcification/Dissolution; Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Coast and continental shelf; Containers and aquaria (20-1000 L or 〈 1 m**2); Corrosion; Corrosion, standard deviation; Echinodermata; Eucidaris tribuloides; Experiment duration; Force; Force, standard deviation; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Laboratory experiment; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; Registration number of species; Salinity; Second moment of area; Second moment of area, standard deviation; Single species; Species; Temperature, water; Treatment; Tripneustes ventricosus; Tropical; Type; Uniform resource locator/link to reference; Young's modulus; Youngs modulus, standard deviation  (1)
Collection
Keywords
Publisher
Years
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Collard, Marie; De Ridder, Chantal; David, Bruno; Dehairs, Frank; Dubois, Philippe (2014): Could the acid-base status of Antarctic sea urchins indicate a better-than-expected resilience to near-future ocean acidification? Global Change Biology, https://doi.org/10.1111/gcb.12735
    Publication Date: 2024-03-15
    Description: Increasing atmospheric carbon dioxide concentration alters the chemistry of the oceans towards more acidic conditions. Polar oceans are particularly affected due to their low temperature, low carbonate content and mixing patterns, for instance upwellings. Calcifying organisms are expected to be highly impacted by the decrease in the oceans' pH and carbonate ions concentration. In particular, sea urchins, members of the phylum Echinodermata, are hypothesized to be at risk due to their high-magnesium calcite skeleton. However, tolerance to ocean acidification in metazoans is first linked to acid-base regulation capacities of the extracellular fluids. No information on this is available to date for Antarctic echinoderms and inference from temperate and tropical studies needs support. In this study, we investigated the acid-base status of 9 species of sea urchins (3 cidaroids, 2 regular euechinoids and 4 irregular echinoids). It appears that Antarctic regular euechinoids seem equipped with similar acid-base regulation systems as tropical and temperate regular euechinoids but could rely on more passive ion transfer systems, minimizing energy requirements. Cidaroids have an acid-base status similar to that of tropical cidaroids. Therefore Antarctic cidaroids will most probably not be affected by decreasing seawater pH, the pH drop linked to ocean acidification being negligible in comparison of the naturally low pH of the coelomic fluid. Irregular echinoids might not suffer from reduced seawater pH if acidosis of the coelomic fluid pH does not occur but more data on their acid-base regulation are needed. Combining these results with the resilience of Antarctic sea urchin larvae strongly suggests that these organisms might not be the expected victims of ocean acidification. However, data on the impact of other global stressors such as temperature and of the combination of the different stressors needs to be acquired to assess the sensitivity of these organisms to global change.
    Keywords: Abatus cavernosus; Acid-base regulation; Alkalinity, total; Alkalinity, total, standard deviation; Amphipneustes lorioli; Amphipneustes rostratus; Amphipneustes similis; Animalia; Antarctic; Aporocidaris eltaniana; Aragonite saturation state; Aragonite saturation state, standard deviation; Benthic animals; Benthos; Bicarbonate ion; Bicarbonate ion, standard deviation; Bransfield_Strait; Calcite saturation state; Calcite saturation state, standard deviation; Calculated; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate ion, standard deviation; Carbonate system computation flag; Carbon dioxide; Carbon dioxide, standard deviation; Coast and continental shelf; Coelomic fluid, alkalinity; Coelomic fluid, carbon, inorganic, dissolved; Coelomic fluid, pH; Coulometric titration; Ctenocidaris gigantea; DATE/TIME; Difference; Echinodermata; Event label; EXP; Experiment; Field observation; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); LATITUDE; LONGITUDE; Notocidaris gaussensis; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; pH, standard deviation; Polar; Potentiometric; Potentiometric titration; Salinity; Single species; Size; Species; Station label; Sterechinus antarcticus; Sterechinus neumayeri; Temperature, water; Weddell_Sea_OA; δ13C
    Type: Dataset
    Format: text/tab-separated-values, 2540 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Dery, Aurélie; Collard, Marie; Dubois, Philippe (2017): Ocean Acidification Reduces Spine Mechanical Strength in Euechinoid but Not in Cidaroid Sea Urchins. Environmental Science & Technology, 51(7), 3640-3648, https://doi.org/10.1021/acs.est.6b05138
    Publication Date: 2024-03-15
    Description: Echinoderms are considered as particularly sensitive to ocean acidification (OA) as their skeleton is made of high-magnesium calcite, one of the most soluble forms of calcium carbonate. Recent studies have investigated effects of OA on the skeleton of "classical" sea urchins (euechinoids) but the impact of etching on skeleton mechanical properties is almost unknown. Furthermore, the integrity of the skeleton of cidaroids has never been assessed although their extracellular fluid is undersaturated with respect to their skeleton and the skeleton of their primary spines is in direct contact with seawater. In this study, we compared the dissolution of test plates and spines as well as the spine mechanical properties (two-points bending tests) in a cidaroid (Eucidaris tribuloides) and a euechinoid (Tripneustes ventricosus) submitted to a 5-weeks acidification experiment (pHT 8.1, 7.7, 7.4). Test plates of both species were not affected by dissolution. Spines of E. tribuloides showed no mechanical effects at pHSW-T 7.4 despite traces of corrosion on secondary spines. On the contrary, spines of the T. ventricosus were significantly etched at both pHSW-T 7.7 and 7.4 and their fracture force reduced by 16 to 35%, respectively. This increased brittleness is probably of little significance with regards to predation protection but has consequences in terms of energy allocation.
    Keywords: Alkalinity, total; Animalia; Aragonite saturation state; Benthic animals; Benthos; Bicarbonate ion; Calcification/Dissolution; Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Coast and continental shelf; Containers and aquaria (20-1000 L or 〈 1 m**2); Corrosion; Corrosion, standard deviation; Echinodermata; Eucidaris tribuloides; Experiment duration; Force; Force, standard deviation; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Laboratory experiment; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; Registration number of species; Salinity; Second moment of area; Second moment of area, standard deviation; Single species; Species; Temperature, water; Treatment; Tripneustes ventricosus; Tropical; Type; Uniform resource locator/link to reference; Young's modulus; Youngs modulus, standard deviation
    Type: Dataset
    Format: text/tab-separated-values, 330 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...