ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AWI_PhyOce; File content; File format; File name; File size; FRAM; Fram Strait; Fram-Strait; FRontiers in Arctic marine Monitoring; Physical Oceanography @ AWI; Uniform resource locator/link to file  (1)
  • Atlantic Water  (1)
Collection
Publisher
Language
Years
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Wekerle, Claudia; Wang, Qiang; von Appen, Wilken-Jon; Danilov, Sergey; Schourup-Kristensen, Vibe; Jung, Thomas (2017): Eddy-Resolving Simulation of the Atlantic Water Circulation in the Fram Strait With Focus on the Seasonal Cycle. Journal of Geophysical Research: Oceans, 122(11), 8385-8405, https://doi.org/10.1002/2017JC012974
    Publication Date: 2023-03-16
    Description: Eddy driven recirculation of Atlantic Water (AW) in the Fram Strait modifies the amount of heat that reaches the Arctic Ocean, but is difficult to constrain in ocean models due to very small Rossby radius there. In this study we explore the effect of resolved eddies on the AW circulation in a locally eddy-resolving simulation of the global Finite-Element-Sea ice-Ocean-Model (FESOM) integrated for the years 2000-2009, by focusing on the seasonal cycle. An eddy-permitting simulation serves as a control run. Our results suggest that resolving local eddy dynamics is critical to realistically simulate ocean dynamics in the Fram Strait. Strong eddy activity simulated by the eddy-resolving model, with peak in winter and lower values in summer, is comparable in magnitude and seasonal cycle to observations from a long-term mooring array, whereas the eddy-permitting simulation underestimates the observed magnitude. Furthermore, a strong cold bias in the central Fram Strait present in the eddy-permitting simulation is reduced due to resolved eddy dynamics, and AW transport into the Arctic Ocean is increased with possible implications for the Arctic Ocean heat budget. Given the good agreement between the eddy-resolving model and measurements, it can help filling gaps that point-wise observations inevitably leave. For example, the path of the West Spitsbergen Current offshore branch, measured in the winter months by the mooring array, is shown to continue cyclonically around the Molloy Deep in the model, representing the major AW recirculation branch in this season.
    Keywords: AWI_PhyOce; File content; File format; File name; File size; FRAM; Fram Strait; Fram-Strait; FRontiers in Arctic marine Monitoring; Physical Oceanography @ AWI; Uniform resource locator/link to file
    Type: Dataset
    Format: text/tab-separated-values, 100 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-07-24
    Description: Substantial changes have occurred in the Arctic Ocean in the last decades. Not only sea ice has retreated significantly, but also the ocean at middepth showed a warming tendency. By using simulations we identified a mechanism that intensifies the upward trend in ocean heat supply to the Arctic Ocean through Fram Strait. The reduction in sea ice export through Fram Strait induced by Arctic sea ice decline increases the salinity in the Greenland Sea, which lowers the sea surface height and strengthens the cyclonic gyre circulation in the Nordic Seas. The Atlantic Water volume transport to the Nordic Seas and Arctic Ocean is consequently strengthened. This enhances the warming trend of the Arctic Atlantic Water layer, potentially contributing to the Arctic “Atlantification.” Our study suggests that the Nordic Seas can play the role of a switchyard to influence the heat budget of the Arctic Ocean.
    Keywords: 551.46 ; Arctic Ocean ; Atlantic Water ; sea ice decline ; Nordic Seas ; Greenland Sea ; Atlantification
    Language: English
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...