ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AWI_Coast; Coastal Ecology @ AWI  (4)
  • Alkalinity, total; Alkalinity, total, standard deviation; Animalia; Aragonite saturation state; Aragonite saturation state, standard deviation; Baltic Sea; Benthic animals; Benthos; Bicarbonate ion; Bicarbonate ion, standard deviation; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate ion, standard deviation; Carbonate system computation flag; Carbon dioxide; Coast and continental shelf; Experiment; Figure; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Laboratory experiment; Life stage; Mass; Mass, standard deviation; Mollusca; Mytilus edulis; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; Percentage; pH; pH, standard deviation; Potentiometric; Ratio; Registration number of species; Salinity; Salinity, standard deviation; Shell length; Shell length, standard deviation; Single species; Species; Temperate; Temperature, water; Temperature, water, standard deviation; Treatment; Type; Uniform resource locator/link to reference; Zooplankton  (1)
Collection
Keywords
Publisher
Years
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Wegner, K Mathias; Volkenborn, Nils; Peter, Hannes; Eiler, Alexander (2013): Disturbance induced decoupling between host genetics and composition of the associated microbiome. BMC Microbiology, 13(252), https://doi.org/10.1186/1471-2180-13-252
    Publication Date: 2023-03-16
    Description: Background: Studies of oyster microbiomes have revealed that a limited number of microbes, including pathogens, can dominate microbial communities in host tissues such as gills and gut. Much of the bacterial diversity however remains underexplored and unexplained, although environmental conditions and host genetics have been implicated. We used 454 next generation 16S rRNA amplicon sequencing of individually tagged PCR reactions to explore the diversity of bacterial communities in gill tissue of the invasive Pacific oyster Crassostrea gigas stemming from genetically differentiated beds under ambient outdoor conditions and after a multifaceted disturbance treatment imposing stress on the host. Results: While the gill associated microbial communities in oysters were dominated by few abundant taxa (i.e. Sphingomonas, Mycoplasma) the distribution of rare bacterial groups correlated to relatedness between the hosts under ambient conditions. Exposing the host to disturbance broke apart this relationship by removing rare phylotypes thereby reducing overall microbial diversity. Shifts in the microbiome composition in response to stress did not result in a net increase in genera known to contain potentially pathogenic strains. Conclusion: The decrease in microbial diversity and the disassociation between population genetic structure of the hosts and their associated microbiome suggest that disturbance (i.e. stress) may play a significant role for the assembly of the natural microbiome. Such community shifts may in turn also feed back on the course of disease and the occurrence of mass mortality events in oyster populations.
    Keywords: AWI_Coast; Coastal Ecology @ AWI
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Shama, Lisa N S; Wegner, K Mathias (2014): Grandparental effects in marine sticklebacks: transgenerational plasticity across multiple generations. Journal of Evolutionary Biology, 27(11), 2297-2307, https://doi.org/10.1111/jeb.12490
    Publication Date: 2023-03-16
    Description: Nongenetic inheritance mechanisms such as transgenerational plasticity (TGP) can buffer populations against rapid environmental change such as ocean warming. Yet, little is known about how long these effects persist and whether they are cumulative over generations. Here, we tested for adaptive TGP in response to simulated ocean warming across parental and grandparental generations of marine sticklebacks. Grandparents were acclimated for two months during reproductive conditioning, whereas parents experienced developmental acclimation, allowing us to compare the fitness consequences of short-term vs. prolonged exposure to elevated temperature across multiple generations. We found that reproductive output of F1 adults was primarily determined by maternal developmental temperature, but carry-over effects from grandparental acclimation environments resulted in cumulative negative effects of elevated temperature on hatching success. In very early stages of growth, F2 offspring reached larger sizes in their respective paternal and grandparental environment down the paternal line, suggesting that other factors than just the paternal genome may be transferred between generations. In later growth stages, maternal and maternal granddam environments strongly influenced offspring body size, but in opposing directions, indicating that the mechanism(s) underlying the transfer of environmental information may have differed between acute and developmental acclimation experienced by the two generations. Taken together, our results suggest that the fitness consequences of parental and grandparental TGP are highly context dependent, but will play an important role in mediating some of the impacts of rapid climate change in this system.
    Keywords: AWI_Coast; Coastal Ecology @ AWI
    Type: Dataset
    Format: application/zip, 6 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Schade, Franziska M; Raupach, Michael R; Wegner, K Mathias (2016): Seasonal variation in parasite infection patterns of marine fish species from the Northern Wadden Sea in relation to interannual temperature fluctuations. Journal of Sea Research, 113, 73-84, https://doi.org/10.1016/j.seares.2015.09.002
    Publication Date: 2023-07-01
    Description: Marine environmental conditions are naturally changing throughout the year, affecting life cycles of hosts aswell as parasites. In particular,water temperature is positively correlatedwith the development ofmany parasites and pathogenic bacteria, increasing the risk of infection and diseases during summer. Interannual temperature fluctuations are likely to alter host?parasite interactions, which may result in profound impacts on sensitive ecosystems. In this context we investigated the parasite and bacterial Vibrionaceae communities of four common small fish species (three-spined stickleback Gasterosteus aculeatus, Atlantic herring Clupea harengus, European sprat Sprattus sprattus and lesser sand eel Ammodytes tobianus) in the Northern Wadden Sea over a period of two years. Overall, we found significantly increased relative diversities of infectious species at higher temperature differentials. On the taxon-specific level some macroparasite species (trematodes, nematodes) showed a shift in infection peaks that followed the water temperatures of preceding months, whereas other parasite groups showed no effects of temperature differentials on infection parameters. Our results show that even subtle changes in seasonal temperatures may shift and modify the phenology of parasites as well as opportunistic pathogens that can have far reaching consequences for sensitive ecosystems.
    Keywords: AWI_Coast; Coastal Ecology @ AWI
    Type: Dataset
    Format: application/zip, 4 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Schade, Franziska M; Clemmesen, Catriona; Wegner, K Mathias (2014): Within- and transgenerational effects of ocean acidification on life history of marine three-spined stickleback (Gasterosteus aculeatus). Marine Biology, 161(7), 1667-1676, https://doi.org/10.1007/s00227-014-2450-6
    Publication Date: 2023-07-01
    Description: Some studies have demonstrated that elevated CO2 concentrations in ocean waters negatively impact metabolism and development of marine fish. Particularly,early developmental stages are probably more susceptible to ocean acidification due to insufficient regulations of their acid-base balance. Transgenerational acclimation can be an important mechanism to mediate impacts of increased CO2 on marine species, yet very little is known about the potential of parental effects in teleosts. Therefore, transgenerational effects were investigated on life history in juvenile three-spined sticklebacks Gasterosteus aculeatus by acclimating parents (collected in April 2012, 55°03?N, 8°44?E) and offspring to ambient (~400 µatm) and elevated (~1,000 µatm) CO2 levels and measured parental fecundity as well as offspring survival, growth and otolith characteristics. Exposure to elevated CO2 concentrations led to an increase in clutch size in adults as well as increased juvenile survival and growth rates between 60 and 90 days post-hatch and enlarged otolith areas compared with fish from ambient CO2 concentrations. Moreover, transgenerational effects were observed in reduced survival and body size 30 days post-hatch as well as in enlarged otoliths at the end of the experiment, when fathers or both parents were acclimated to the high-CO2 environment. These results may suggest that elevated CO2 concentrations had rather positive effects on life-history traits of three-spined sticklebacks, but that parental acclimation can modify these effects without improving offspring fitness. Although the mechanistic basis of such transgenerational acclimation remains unclear, selective gradients within generations seem to determine the direction of transgenerational effects.
    Keywords: AWI_Coast; Coastal Ecology @ AWI
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Thomsen, Jörn; Haynert, Kristin; Wegner, K Mathias; Melzner, Frank (2015): Impact of seawater carbonate chemistry on the calcification of marine bivalves. Biogeosciences, 12(14), 4209-4220, https://doi.org/10.5194/bg-12-4209-2015
    Publication Date: 2024-03-15
    Description: Bivalve calcification, particularly of the early larval stages, is highly sensitive to the change in ocean carbonate chemistry resulting from atmospheric CO2 uptake. Earlier studies suggested that declining seawater [CO32−] and thereby lowered carbonate saturation affect shell production. However, disturbances of physiological processes such as acid-base regulation by adverse seawater pCO2 and pH can affect calcification in a secondary fashion. In order to determine the exact carbonate system component by which growth and calcification are affected it is necessary to utilize more complex carbonate chemistry manipulations. As single factors, pCO2 had no effects and [HCO3-] and pH had only limited effects on shell growth, while lowered [CO32−] strongly impacted calcification. Dissolved inorganic carbon (CT) limiting conditions led to strong reductions in calcification, despite high [CO32−], indicating that [HCO3-] rather than [CO32−] is the inorganic carbon source utilized for calcification by mytilid mussels. However, as the ratio [HCO3-] / [H+] is linearly correlated with [CO32−] it is not possible to differentiate between these under natural seawater conditions. An equivalent of about 80 μmol kg−1 [CO32−] is required to saturate inorganic carbon supply for calcification in bivalves. Below this threshold biomineralization rates rapidly decline. A comparison of literature data available for larvae and juvenile mussels and oysters originating from habitats differing substantially with respect to prevailing carbonate chemistry conditions revealed similar response curves. This suggests that the mechanisms which determine sensitivity of calcification in this group are highly conserved. The higher sensitivity of larval calcification seems to primarily result from the much higher relative calcification rates in early life stages. In order to reveal and understand the mechanisms that limit or facilitate adaptation to future ocean acidification, it is necessary to better understand the physiological processes and their underlying genetics that govern inorganic carbon assimilation for calcification.
    Keywords: Alkalinity, total; Alkalinity, total, standard deviation; Animalia; Aragonite saturation state; Aragonite saturation state, standard deviation; Baltic Sea; Benthic animals; Benthos; Bicarbonate ion; Bicarbonate ion, standard deviation; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate ion, standard deviation; Carbonate system computation flag; Carbon dioxide; Coast and continental shelf; Experiment; Figure; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Laboratory experiment; Life stage; Mass; Mass, standard deviation; Mollusca; Mytilus edulis; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; Percentage; pH; pH, standard deviation; Potentiometric; Ratio; Registration number of species; Salinity; Salinity, standard deviation; Shell length; Shell length, standard deviation; Single species; Species; Temperate; Temperature, water; Temperature, water, standard deviation; Treatment; Type; Uniform resource locator/link to reference; Zooplankton
    Type: Dataset
    Format: text/tab-separated-values, 1491 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...