ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • ATOMIC AND MOLECULAR PHYSICS  (1)
  • High Resolution Spectroscopy  (1)
  • SPACECRAFT INSTRUMENTATION  (1)
Collection
Keywords
Publisher
Years
  • 1
    ISSN: 1572-946X
    Keywords: GRBs ; High Resolution Spectroscopy ; Solid State Detectors
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract The Transient Gamma-Ray Spectrometer (TGRS) was launched aboard the GGS/WIND spacecraft on November 1, 1994. After several deep space orbits (∼2 yrs) WIND will eventually be injected into a halo orbit around the Sun-EarthL 1 point. TGRS consists of a 215 cm3 high purityn-type Ge crystal which is kept at cryogenic temperatures by a passive radiative cooler. The energy range covered by the instrument is ∼25–8000 keV with an energy resolution of ∼2–3 keV. The primary task of TGRS is to perform high resolution spectroscopy of gamma-ray bursts and solar flares. Additional objectives are the study of transient x-ray pulsars and, using an on-board passive occulter, the long-term monitoring of sources such as the Crab and the Galactic Center. Since launch, TGRS has been performing exceedingly well, and all the important experiment parameters such as background levels, gain, and resolution have proven to be very stable. To date, TGRS has detected 27 GRBs and three solar flares. Preliminary analysis of our data also indicates that TGRS is indeed sensitive to sources such as the Crab and the Galactic Center.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-19
    Description: Future Ge spectrometers flown in space to observe cosmic gamma-ray sources will incorporate segmented detectors to reduce the background from radioactivity produced by energetic particle reactions. To demonstrate the effectiveness of a segmented Ge detector in rejecting background events due to the beta decay of internal radioactivity, a laboratory experiment has been carried out in which radioactivity was produced in the detector by neutron irradiation. A Cf-252 source of neutrons was used to produce, by neutron capture on Ge-74 (36.5 percent of natural Ge) in the detector itself, Ge-75 (t sub 1/2 = 82.78 min), which decays by beta emission with a maximum electron kinetic energy of 1188 keV. By requiring that an ionizing event deposit energy in two or more of the five segments of the detector, each about 1-cm thick, the beta particles, which have a range of about 1-mm, are rejected, while most external gamma rays incident on the detector are counted. Analysis of this experiment indicates that over 85 percent of the beta events from the decay of Ge-75 are rejected, which is in good agreement with Monte Carlo calculations.
    Keywords: SPACECRAFT INSTRUMENTATION
    Type: IEEE Transactions on Nuclear Science (ISSN 0018-9499); 38; 218-220
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-06-27
    Description: Energetic particles can produce interstitial-vacancy pairs in a crystal by knocking the atoms from their normal positions. Detectors are unique among semiconductor devices in depending on very low concentrations of electrically active impurities, and also on efficient transport of holes and electrons over relatively large distances. Because the dense regions of damage produced by energetic particles may result in donors and/or acceptors, and also provide trapping sites for holes and electrons, detectors are very sensitive to radiation damage. In addition to these effects occurring within the detector, radiation may also change the characteristics of the exposed surfaces causing unpredictable effects on the detector leakage current. Radiation-induced surface degradation has rarely, if ever, been observed for germanium detectors. The possibility of minimizing hole trapping in charge collection by the use of a high-purity germanium coaxial detector configured with the p (+) contact on the coaxial periphery is discussed.
    Keywords: ATOMIC AND MOLECULAR PHYSICS
    Type: NASA. Goddard Space Flight Center Gamma Ray Spectry. in Astrophys.; p 473-478
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...