ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-08-27
    Description: The relative abundances of iron, oxygen, magnesium, and neon in a coronal active region are determined from measurements of soft X-ray line and broadband intensities. The emission measure, temperature, and column density are derived from these measured intensities and are used to place a constraint on the abundances of the heavier elements relative to hydrogen in the corona. The intensity measurements were made on 1987 December 11, when an active region was observed jointly by the American Science and Engineering (AS&E) High Resolution Soft X-Ray Imaging Sounding-Rocket Payload and the X-Ray Polychromator Flat Crystal Spectrometer (FCS) onboard the Solar Maximum Mission spacecraft. The coordinated observations include images through two broadband filters (8 to 29 A and 8 to 39, 44 to 60 A) and profiles of six emission lines: Fe XVII (15.01 A), FE VIII (15.26 A), O VIII (18.97 A), Mg XI (9.17 A), Ne IX (13.44 A), and Fe XVIII (14.21 A). The effects of resonance scattering are considered in the interpretation of the FCS line intensities. We calculated the expected intensity ratio of the two Fe XVII lines as a function of optical depth and compared this ratio with the observed intensity ratio to obtain the optical depths of each of the lines and the column density. The line intensities and the broadband filtered images are consistent with the emission from a thermal plasma where Fe, O, Mg, and Ne have the 'adopted coronal' abundances of Meyer (1985b) relative to one another, but are not consistent with the emission from a plasma having photospheric abundances: The ratios of the abundances of the low first ionization potential (FIP) elements (Fe and Mg) to the abundances of the high-FIP elements (Ne and O) are higher than the ratios seen in the photosphere by a factor of about 3.5. This conclusion is independent of the assumption of either an isothermal or a multithermal plasma. The column densities derived from the Fe XVII line ratio and the geometry of the active region provide a diagnostic of the abundance of hydrogen relative to the heavier elements. We find that the abundance of iron with respect to hydrogen in the corona is higher than the value given Meyer (1985b) by a factor of 8.2(-5.4, +5.1). This means that, for the observed active region, the absolute abundances of the low-FIP elements (Fe and Mg) are enhanced in the corona relative to the photosphere, while the abundances of the high-FIP elements (Ne and O) are either slightly enhanced in the corona or nearly the same in the photosphere and the corona.
    Keywords: ASTROPHYSICS
    Type: The Astrophysical Journal (ISSN 0004-637X); 429; 2 pt; p. 909-923
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-08-14
    Description: The American Science and Engineering Soft X-ray Imaging Payload and the Naval Research Laboratory High Resolution Telescope and Spectrograph (HRTS) were launched from White Sands on 1987 December 11 in coordinated sounding rocket flights. The goal was to investigate the correspondence of fine-scale structures from different temperature regimes in the solar atmosphere, and particularly the relationship between X-ray bright points (XBPs) and transition region explosive events. We present results of the analysis of co-aligned X-ray images, maps of sites of transition region explosive events observed in C IV 10(exp 5), HRTS 1600 A spectroheliograms of the T(sub min) region, and ground-based magnetogram and He I 10830 A images. We examined the relationship of He I 10830 A dark features and evolving magnetic features which correspond to XBPs. We note a frequent double ribbon pattern of the He I dark feature counterparts to XBPs. We discuss an analysis of the relationship of XBPs to evolving magnetic features by Webb et al., which shows that converging magnetic features of opposite polarity are the most significant magnetic field counterparts to XBPs. The magnetic bipolar features associated with XBPs appear as prominent network elements in chromospheric and transition region images. The features in C IV observations corresponding to XBP sites are in general bright, larger scale (approximately 10 arcsec) regions of complex velocity fields of order 40 km/s, which is typical of brighter C IV network elements. These C IV features do not reach the approximately 100 km/s velocities seen in the C IV explosive events. Also, there are many similar C IV bright network features without a corresponding XBP in the X-ray image. The transition region explosive events do not correspond directly to XBPs. The explosive events appear to be concentrated in the quiet Sun at the edges of strong network, or within weaker field strength network regions. We find a greater number of C IV events than expected from the results of a previous Spacelab 2 HRTS disk survey. We attribute this at least partly to better spatial resolution with the newer HRTS data. The full-disk X-ray image shows a pattern of dark lanes in quiet Sun areas. The number density of C IV events is twice as large inside as outside a dark lane (4.6 x 10(exp -3) vs. 2.3 x 10(exp -3) explosive events per arcsec (exp 2)). The dark lane corresponds to an old decaying magnetic neutral line. We suggest that this provides an increased opportunity for small-scale convergence and reconnection of opposite polarity magnetic field features, in analogy with the results of Webb et al. for XBPs but at a reduced scale of reconnection.
    Keywords: ASTROPHYSICS
    Type: The Astrophysical Journal (ISSN 0004-637X); 430; 2 pt; p. 913-924
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...