ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-08-31
    Description: Comets Halley and Wilson exhibited similar 3.4 micron emission features at approx. 1 AU from the Sun. A simple model of thermal emission from organic grains fits the feature, provides optical depths in good agreement with spacecraft measurements, and explains the absence of longer-wavelength organic features as due to spectral heliocentric evolution (Chyba and Sagan, 1987). The model utilizes transmission spectra of organics synthesized in the laboratory by irradiation of candidate cometary ices; the authors have long noted that related gas-phase syntheses yield polycyclic aromatic hydrocarbons, among other organic residues (Sagan et al., 1967). The authors previously concluded (Chyba and Sagan, 1987) that Halley's loss of several meters' depth with each perihelion passage, combined with the good fit of the Halley 3.4 micron feature to that of comet Wilson (Allen and Wickramasinghe, 1987), argues for the primordial - but not necessarily interstellar - origin of cometary organics. The authors examine the relative importance to the formation of organics of the variety of radiation environments experienced by comets. They conclude that there is at present no compelling reason to choose any of three contributing mechanisms (pre-accretion UV, pre-accretion cosmic ray, and post-accretion radionuclide processing) as the most important.
    Keywords: ASTROPHYSICS
    Type: NASA, Ames Research Center, Interstellar Dust: Contributed Papers; p 433-435
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-08-31
    Description: A review and partial summary of projects within several areas of research generally involving the origin, distribution, chemistry, and spectral/dielectric properties of volatiles and organic materials in the outer solar system and early terrestrial environments are presented. The major topics covered include: (1) impact delivery of volatiles and organic compounds to the early terrestrial planets; (2) optical constants measurements; (3) spectral classification, chemical processes, and distribution of materials; and (4) radar properties of ice, hydrocarbons, and organic heteropolymers.
    Keywords: ASTROPHYSICS
    Type: NASA, Washington, Reports of Planetary Geology and Geophysics Program, 1990; p 581-583
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-12
    Description: An emission feature peaking near 3.4 microns that is typical of C-H stretching in hydrocarbons and which fits a simple, two-component thermal emission model for dust in the cometary coma, has been noted in observations of Comets Halley and Wilson. A noteworthy consequence of this modeling is that, at about 1 AU, emission features at wavelengths longer than 3.4 microns come to be 'diluted' by continuum emission. A quantitative development of the model shows it to agree with observational data for Comet Halley for certain, plausible values of the optical constants; the observed heliocentric evolution of the 3.4-micron feature thereby furnishes information on the composition of the comet's organic grains.
    Keywords: ASTROPHYSICS
    Type: Icarus (ISSN 0019-1035); 79; 362-381
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-08-27
    Description: No known body in the Solar System has a spectrum redder than that of object 5145 Pholus. We use Hapke scattering theory and optical constants measured in this laboratory to examine the ability of mixtures of a number of organic solids and ices to reproduce the observed spectrum and phase variation. The primary materials considered are poly-HCN, kerogen, Murchison organic extract, Titan tholin, ice tholin, and water ice. In a computer grid search of over 10 million models, we find an intraparticle mixture of 15% Titan tholin, 10% poly-HCN, and 75% water ice with 10-micrometers particles to provide an excellent fit. Replacing water ice with ammonia ice improves the fits significantly while using a pure hydrocarbon tholin, Tholin alpha, instead of Titan tholin makes only modest improvements. All acceptable fits require Titan tholin or some comparable material to provide the steep slope in the visible, and poly-HCN or some comparable material to provide strong absorption in the near-infrared. A pure Titan tholin surface with 16-micrometers particles, as well as all acceptable Pholus models, fit the present spectrophotometric data for the transplutonian object 1992 QB(sub 1). The feasibility of gas-phase chemistry to generate material like Titan tholin on such small objects is examined. An irradiated transient atmosphere arising from sublimating ices may generate at most a few centimeters of tholin over the lifetime of the Solar System, but this is insignificant compared to the expected lag deposit of primordial contaminants left behind by the sublimating ice. Irradiation of subsurface N2/CH4 or NH3/CH4 ice by cosmic rays may generate approximately 20 cm of tholin in the upper 10 m of regolith in the same time scale but the identity of this tholin to its gas-phase equivalent has not been demonstrated.
    Keywords: ASTROPHYSICS
    Type: ICARUS (ISSN 0019-1035); 107; 2; p. 288-303
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-08-28
    Description: We present laboratory measurements of the radiation yields of complex organic solids produced from N2/CH4 gas mixtures containing 10 or 0.1% CH4. These tholins are thought to resemble organic aerosols produced in the atmospheres of Titan, Pluto, and Triton. The tholin yields are large compared to the total yield of gaseous products: nominally, 13 (C + N)/100 eV for Titan tholin and 2.1 (C + N)/100 eV for Triton tholin. High-energy magnetospheric electrons responsible for tholin production represents a class distinct from the plasma electrons considered in models of Titan's aiglow. Electrons with E greater than 20 keV provide an energy flux approximately 1 x 10(exp -2) erg/cm/sec, implying from our measured tholin yields a mass flux of 0.5 to 4.0 x 10(exp -14) g/sq cm/sec of tholin. (The corresponding thickness of the tholin sedimentary column accumulated over 4 Gyr on Titan's surface is 4 to 30 m). This figure is in agreement with required mass fluxes computed from recent radiative transfer and sedimentation models. If, however, theses results, derived from experiments at approximately 2 mb, are applied to lower pressure levels toward peak auroral electron energy deposition and scaled with pressure as the gas-phase organic yields, the derived tholin mass flux is at least an order of magnitude less. We attrribute this difference to the fact that tholin synthesis occurs well below the level of maximum electron energy depositon and to possible contributions to tholis from UV-derived C2-hydrocarbons. We conclude that Tita tholin, produced by magnetospheric electrons, is alone sufficient to supply at least a significant fraction of Titan's haze-a result consistent with the fact that the optical properties of Titan tholin, among all proposed material, are best at reproducing Titan's geometric albedo spectrum from near UV to mid-IR in light-scattering models.
    Keywords: ASTROPHYSICS
    Type: Icarus (ISSN 0019-1035); 112; 2; p. 376-381
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...