ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • ASTROPHYSICS  (1)
Collection
Keywords
Years
  • 1
    Publication Date: 2019-08-28
    Description: Near-infrared (1.2-2.4 micrometers) images are presented for the central 10 arcsec of the Seyfert 1 galaxy Markarian 231. We find a faint, but intrinsically luminous (M(sub k) approximately -20.7) secondary peak in the near-infrared light distribution approximately 3.5 arcsec (2.7 kpc) south of the primary Seyfert 1 nucleus. Since there is no optical or infrared evidence for ongoing star formation at the location of this secondary peak, and its near-infrared luminosity and color are comparable to slightly reddened spiral bulges or elliptical nuclei, we identify this peak with the stripped nucleus of the companion galaxy involved in the Mrk 231 merger event. Depending upon the exact ratio of the masses of the primary and secondary nucleus in the Mrk 231 system we estimate a merger time scale of less than or equal to 10(exp 9) yr. The morphology of the southern nucleus suggests that it may have recently survived a close passage (r less than 200 pc) with the Seyfert 1 nucleus on a highly elliptical orbit, in which case the merger time scale may be significantly shorter (approximately 10(exp 7) yr. We re-calculate the average merger time scale for the seven ultraluminous infrared galaxies with double nuclei in the Bright Galaxy Sample (the BGS) of Soifer et al. (AJ, 98, 766 (1989)) and derive a value of approximately 10(exp 8) yr. Since seven of ten of the ultraluminous infrared galaxies in the BGS are now known to be double, we estimate the ultraluminous 'phase' may be close to this value. Along with Arp 220 and Mrk 273, Mrk 231 is the third member of the class to possess a high brightness temperature non-thermal radio core and a double nucleus, suggesting the time scale for the generation or fueling of the active nucleus can be much less than the dynamical time scale for the merger of the progenitor nuclei.
    Keywords: ASTROPHYSICS
    Type: The Astronomical Journal (ISSN 0004-6256); 108; 1; p. 76-83
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...