ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-06-28
    Description: A review on the quantitative spectroscopy (QS) of hot stars is presented, with particular attention given to the study of photospheres, optically thin winds, unified model atmospheres, and stars with optically thick winds. It is concluded that the results presented here demonstrate the reliability of Qs as a unique source of accurate values of the global parameters (effective temperature, surface gravity, and elemental abundances) of hot stars.
    Keywords: ASTROPHYSICS
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-12
    Description: Wind models using the recent improvements of radiation driven wind theory by Pauldrach et al. (1986) and Pauldrach (1987) are presented for central stars of planetary nebulae. The models are computed along evolutionary tracks evolving with different stellar mass from the Asymptotic Giant Branch. We show that the calculated terminal wind velocities are in agreement with the observations and allow in principle an independent determination of stellar masses and radii. The computed mass-loss rates are in qualitative agreement with the occurrence of spectroscopic stellar wind features as a function of stellar effective temperature and gravity.
    Keywords: ASTROPHYSICS
    Type: Astronomy and Astrophysics (ISSN 0004-6361); 207; 1 De; 123-131
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-12
    Description: Analytical solutions for radiation-driven winds of hot stars including the important finite cone angle effect (see Pauldrach et al., 1986; Friend and Abbott, 1986) are derived which approximate the detailed numerical solutions of the exact wind equation of motion very well. They allow a detailed discussion of the finite cone angle effect and provide for given line force parameters k, alpha, delta definite formulas for mass-loss rate M and terminal velocity v-alpha as function of stellar parameters.
    Keywords: ASTROPHYSICS
    Type: Astronomy and Astrophysics (ISSN 0004-6361); 219; 2-Jan
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...