ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-08-24
    Description: The Far-Infrared Absolute Spectrophotometer (FIRAS) instrument on the Cosmic Background Explorer (COBE) has determined the dipole spectrum of the cosmic microwave background radiation (CMBR) from 2 to 20/cm. For each frequency the signal is decomposed by fitting to a monopole, a dipole, and a Galactic template for approximately 60% of the sky. The overall dipole spectrum fits the derivative of a Planck function with an amplitude of 3.343 +/- 0.016 mK (95% confidence level), a temperature of 2.714 +/- 0.022 K (95% confidence level), and an rms deviation of 6 x 10(exp -9) ergs/sq cm/s/sr cm limited by a detector and cosmic-ray noise. The monopole temperature is consistent with that determined by direct measurement in the accompanying article by Mather et al.
    Keywords: ASTROPHYSICS
    Type: The Astrophysical Journal, Part 1 (ISSN 0004-637X); 420; 2; p. 445-449
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-24
    Description: The cosmic microwave background radiation (CMBR) has a blackbody spectrum within 3.4 x 10(exp -8) ergs/sq cm/s/sr cm over the frequency range from 2 to 20/cm (5-0.5 mm). These measurements, derived from the Far-Infrared Absolute Spectrophotomer (FIRAS) instrument on the Cosmic Background Explorer (COBE) satellite, imply stringent limits on energy release in the early universe after t approximately 1 year and redshift z approximately 3 x 10(exp 6). The deviations are less than 0.30% of the peak brightness, with an rms value of 0.01%, and the dimensionless cosmological distortion parameters are limited to the absolute value of y is less than 2.5 x 10(exp -5) and the absolute value of mu is less than 3.3 x 10(exp -4) (95% confidence level). The temperature of the CMBR is 2.726 +/- 0.010 K (95% confidence level systematic).
    Keywords: ASTROPHYSICS
    Type: The Astrophysical Journal, Part 1 (ISSN 0004-637X); 420; 2; p. 439-444
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-24
    Description: The Far-Infrared Absolute Spectrophotometer (FIRAS) instrument on the Cosmic Background Explorer (COBE) satellite was designed to accurately measure the spectrum of the cosmic microwave background radiation (CMBR) in the frequency range 1-95/cm with an angular resolution of 7 deg. We describe the calibration of this instrument, including the method of obtaining calibration data, reduction of data, the instrument model, fitting the model to the calibration data, and application of the resulting model solution to sky observations. The instrument model fits well for calibration data that resemble sky condition. The method of propagating detector noise through the calibration process to yield a covariance matrix of the calibrated sky data is described. The final uncertainties are variable both in frequency and position, but for a typical calibrated sky 2.6 deg square pixel and 0.7/cm spectral element the random detector noise limit is of order of a few times 10(exp -7) ergs/sq cm/s/sr cm for 2-20/cm, and the difference between the sky and the best-fit cosmic blackbody can be measured with a gain uncertainty of less than 3%.
    Keywords: ASTROPHYSICS
    Type: The Astrophysical Journal, Part 1 (ISSN 0004-637X); 420; 2; p. 457-473
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-06-28
    Description: It is believed that X-ray emission from clusters of galaxies represents thermal bremsstrahlung from a hot plasma. According to Sunyaev and Zel'dovich (1972), the plasma column density and temperature derived from this model imply a measurable distortion of the cosmic background radiation (CBR) in the cluster direction. This distortion results from the Compton scattering of the CBR photons by the electrons in the plasma, resulting in an average increase of each photon. This process, known as the Sunyaev-Zel'dovich effect, is photon conserving and 'shifts' the CBR spectrum to higher frequencies. The result is a decrease of flux at frequencies below 7.5 per cm (the Rayleigh-Jeans region), and an increase above. The investigation is concerned with measurements of the Sunyaev-Zel'dovich effect at frequencies in the range from 3 to 10 per cm. Attention is given to the employed observing and analysis technique, and an initial null result for the cluster Abell 1795.
    Keywords: SPACE RADIATION
    Type: Astrophysical Journal, Part 2 - Letters to the Editor (ISSN 0004-637X); 271; Aug. 1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-06-27
    Description: Previously reported X-ray data from the vicinity of the Small Magellanic Cloud (SMC) have been reanalyzed using H I data from a more detailed and sensitive 21-cm survey of this region. The results support the previous conclusion: assuming that the interstellar material absorbs according to the cross sections of Brown and Gould (1970), at least 75 per cent of the observed 0.25-keV X-ray flux is of local origin. The corollary problem of placing a cosmologically useful upper limit on the extragalactic flux will be difficult to solve until the behavior of the local component is better understood; but if the local flux is isotropic, a 3-sigma upper limit of 240 photons per (sq cm s sr keV) at 0.25 keV may be placed on a flux originating beyond the SMC. Tables of H I column density are given for an area 30 deg by 30 deg about the SMC. The high-velocity component, presumably associated with the Magellanic Cloud system, and the galactic disk component are tabulated separately.
    Keywords: SPACE RADIATION
    Type: Astrophysical Journal; 209; Oct. 1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: Observations from the first flight of the Medium Scale Anisotropy Measurement (MSAM) are analyzed to place limits on Gaussian fluctuations in the cosmic microwave background radiation (CMBR). This instrument chops a 30 min beam in a three-position pattern with a throw of +/- 40 min; the resulting data is analyzed in statistically independent single- and double-difference sets. We observe in four spectral channels at 5.6, 9.0, 16.5, and 22.5/cm, allowing the separation of interstellar dust emission from CMBR fluctuations. The dust component is correlated with the IRAS 100 micron map. The CMBR component has two regions where the signature of an unresolved source is seen. Rejecting these two source regions, we obtain a detection of fluctuations which match CMBR in our spectral bands of 0.6 x 10(exp -5) is less than Delta (T)/T is less than 2.2 x 10(exp -5) (90% CL interval) for total rms Gaussian fluctuations with correlation angle 0.5 deg, using the single-difference demodulation. Fore the double difference demodulation, the result is 1.1 x 10(exp -5) is less than Delta(T)/T is less than 3.1 x 10(exp -5) (90% CL interval) at a correlation angle of 0.3 deg.
    Keywords: ASTROPHYSICS
    Type: Astrophysical Journal, Part 2 - Letters (ISSN 0004-637X); 422; 2; p. L37-L40
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-08-27
    Description: The large-scale cosmic background anisotropy detected by the COBE Differential Microwave Radiometer (DMR) instrument is compared to the sensitive previous measurements on various angular scales, and to the predictions of a wide variety of models of structure formation driven by gravitational instability. The observed anisotropy is consistent with all previously measured upper limits and with a number of dynamical models of structure formation. For example, the data agree with an unbiased cold dark matter (CDM) model with H0 = 50 km/s Mpc and Delta-M/M = 1 in a 16 Mpc radius sphere. Other models, such as CDM plus massive neutrinos (hot dark matter (HDM)), or CDM with a nonzero cosmological constant are also consistent with the COBE detection and can provide the extra power seen on 5-10,000 km/s scales.
    Keywords: SPACE RADIATION
    Type: Astrophysical Journal, Part 2 - Letters (ISSN 0004-637X); 396; 1, Se; L13-L18
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-08-27
    Description: Preliminary models of microwave emission from the Milky Way Galaxy based on COBE and other data are constructed for the purpose of distinguishing cosmic and Galactic signals. Differential Microwave Radiometer (DMR) maps, with the modeled Galactic emission removed, are fitted for a quadrupole distribution. Autocorrelation functions for individual Galactic components are presented. When Galactic emission is removed from the DMR data, the residual fluctuations are virtually unaffected, and therefore they are not dominated by any known Galactic emission component.
    Keywords: SPACE RADIATION
    Type: Astrophysical Journal, Part 2 - Letters (ISSN 0004-637X); 396; 1, Se; L7-L12
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...