ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-08-28
    Description: We present a detailed study of the highest-frequency component of smooth radio emission observed during the Voyager 2 encounter with Neptune in August 1989. This emission occurs during three distinct periods on August 24 and 25, 1989, in the frequency range of 550 to 900 kHz. By assuming straight-line propagation from sources of both fundamental and second harmonic gyroemission, we perform a detailed analysis of the observed polarization of the emission. The data are most consistent with an L-O mode source in the north magnetic polar region, around 50 deg W, 50 deg N. A second possible source is in the north magnetic polar region, around 270 deg W, 50 deg N. This source must emit in the R-X mode.
    Keywords: ASTROPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 100; A4; p. 5567-5578
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: We present initial analysis and conclusions from plasma observations made during the reported Mars Dust plume event of March - April 2012. During this period, multiple independent amateur observers detected a localized, high-altitude plume over the Martian dawn terminator [Sanchez-Lavega7 et al., Nature, 2015, doi:10.1038nature14162], the origin of which remains to be explained. We report on in-situ measurements of ionospheric plasma density and solar wind parameters throughout this interval made by Mars Express, obtained over the surface region, but at the opposing terminator. We tentatively conclude that the formation and/or transport of this plume to the altitudes where it was observed could be due in part the result of a large interplanetary coronal mass ejection (ICME) encountering the Martian system. Interestingly, we note that a similar plume detection in May 1997 may also have been associated with a large ICME impact at Mars.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN30869 , Journal of Geophysical Research (ISSN 2169-9380) (e-ISSN 2169-9402); 121; 4; 3139-3154
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...