ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Publikationsdatum: 2019-06-28
    Beschreibung: A series of 71 mid-infrared images of a small region of the Moon were obtained from the KAO in October, 1993. These images have been assembled into a 5.0 to 7.0 micron image cube that has been calibrated relative to the average spectrum of this region of the Moon at these wavelengths. The data show that clear, detectable spectral differences exist on the Moon in the mid-IR. Some of the spectral differences are correlated with morphologic features such as craters. Specific spectral features near 5.6 and 6.7 microns may be related to the presence of plagioclase or pyroxene.
    Schlagwort(e): ASTRONOMY
    Materialart: Astronomical Society of the Pacific, Airborne Astronomy Symposium on the Galactic Ecosystem: From Gas to Stars to Dust, Volume 73; p 341-344
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2019-06-28
    Beschreibung: The results of spectral measurements for mafic silicates are given. The study provided valuable spectral reflectance information about mafic silicates and phyllosilicates in the 2.5 to 4.6 micron wavelength region. It was shown that the reflectance of these materials is strongly affected by the presence of H2O and OH. Therefore, the identification of these absorbing species is greatly enhanced.
    Schlagwort(e): ASTRONOMY
    Materialart: NASA, Washington, Reports of Planetary Geology and Geophysics Program, 1986; p 187-189
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    facet.materialart.
    Unbekannt
    In:  Other Sources
    Publikationsdatum: 2019-07-17
    Beschreibung: Comparison of the identity and abundances of ices observed around protostars and those associated with comets clearly suggests that comets preserve the heritage of the interstellar materials that aggregated to form them. However, the ability to identify these same species on icy satellites in the outer solar system is a complex function of the composition of the original ices, their subsequent thermal histories, and their exposure to various radiation environments. Our ability to identify the ices currently present on objects in the outer solar system relies upon observational and laboratory, and theoretical efforts. To date there is ample observational evidence for crystalline water ice throughout the outer solar system. In addition, there is growing evidence that amorphous ice may be present on some bodies. More volatile ices, e.g. N2, CH4. CO, and other species, e.g. ammonia hydrate, are identified on objects lying at and beyond Uranus. Both photolysis and radiolysis play important roles in altering the original surfaces due to chemical reactions and erosion of the surface. Ultraviolet photolysis appears to dominate alteration of the upper few hundred Angstroms, although sputtering the surface can sometimes be a significantly competitative process; dominating on icy surfaces embedded in a strong planetary magnetospheric field. There is growing observational evidence that the by-products of photolysis and radiolysis, suggested on a theoretical basis, are present on icy surfaces.
    Schlagwort(e): Astronomy
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2019-07-19
    Beschreibung: Tiny suspensions of solid particles or liquid droplets, called aerosols, hover in earth's atmosphere and can be found over just about anywhere including oceans, deserts, vegetated areas, and other global regions. Aerosols come in a variety of sizes, shapes, and compositions which depend on such factors as their origin and how long they have been in the atmosphere (i.e., their residence time). Some of the more common types of aerosols include mineral dust and sea salt which get lifted from the desert and ocean surfaces, respectively by mechanical forces such as strong winds. Depending on their size, aerosols will either fall out gravitationally, as in the case of larger particles, or will remain resident in the atmosphere where they can undergo further change through interactions with other aerosols and cloud particles. Not only do aerosols affect air quality where they pose a health risk, they can also perturb the distribution of radiation in the earth-atmosphere system which can inevitably lead to changes in our climate. One aerosol that has been in the forefront of many recent studies, particularly those examining its radiative effects, is mineral dust. The large spatial coverage of desert source regions and the fact that dust can radiatively interact with such a large part of the electromagnetic spectrum due to its range in particle size, makes it an important aerosol to study. Dust can directly scatter and absorb solar and infrared radiation which can subsequently alter the amount of radiation that would otherwise be present in the absence of dust at any level of the atmosphere like the surface. This is known as radiative forcing. At the surface dust can block incoming solar energy, however at infrared wavelengths, dust acts to partially compensate the solar losses. Evaluating the solar radiative effect of dust aerosols is relatively straightforward due in part to the relatively large signal-to-noise ratio in the measurements. At infrared wavelengths, on the other hand, the effect is rather difficult to ascertain since the measured dust signal level is on the same order as the instrumental uncertainties. Although the radiative impact of dust is much smaller in the infrared, it can still have a noticeable influence on the distribution of energy in the Earth-atmosphere system. This is mainly attributed to the strong light-absorptive properties commonly found in many earth minerals.
    Schlagwort(e): Meteorology and Climatology
    Materialart: GSFC.JA.00444.2012
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...