ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • ASTRONOMY  (6)
  • Astronomy; Astrophysics  (1)
  • Astrophysics; Astronomy  (1)
  • 1
    Publication Date: 2019-06-28
    Description: During the all sky survey (May 1991 - Nov. 1992) of the Compton Gamma Ray Observatory the Vela pulsar PSR0833-45 was in the field of view of the Energetic Gamma Ray Experiment Telescope (EGRET) in ten separate viewing periods. The pulsar was detected in each one. The average intensity from 100 MeV to 2 GeV was (7.8 +/- 1.0) x 10 (exp -6) photons cm(exp -2) s(exp -1), which indicates that the pulsar in the years 1991/92 was in a state comparable to the low fluxes observed in 1977-1980. No significant changes in intensity were detected during the EGRET observations. The total spectrum of PSR0833-45 measured by EGRET can be described by a power law with index -(1.70 +/- 0.02) over the range 30 MeV to 2 GeV. The extrapolation of this spectrum into the 3 to 30 MeV range agrees with the observations by COMPTEL. Above 2 to 4 GeV EGRET detects a strong spectral break. The lightcurves obtained show a familar structure in the phase histogram: two peaks separated by 0.424 +/- 0.002 in phase with considerable emission in the phase interval between the peaks. The first gamma ray peak maximum trails the single radio peak maximum by 10.54 +/- 0.09 ms (= 0.118 +/- 0.001 in phase). The widths of the emission peaks (FWHM) are 2.7 ms for the first peak (0.03 phase) and 4.1 ms for the second peak (0.05 phase). The widths are approximately constant below a GeV, but show a tendency to become narrower at higher energies. On Jul. 20 1991 a glitch of the Vela period was registered in monitor radio observations. No significant differences between the pre- and post-glitch gamma ray lightcurves were found. The statistics available for the Vela observations allow for a division of the lightcurve into eight phase intervals. The emission peak cores (central FWHM) with leading and trailing wings and two interval regions were defined and spectra were derived for all parts of the lightcurve. The energy spectra for the eight phase intervals show significant differences: the first peak (approximately E(exp -1.81 +/- 0.04)) is somewhat softer than the second peak (approximately E(exp -1.71 +/- 0.03)); the wings attached to each peak show softer spectra than the code of the peaks; the interval emission has the hardest spectrum (approximately E(exp -1.52 +/- 0.03)).
    Keywords: ASTRONOMY
    Type: NASA-CR-197959 , NAS 1.26:197959 , MPE-PREPRINT-289
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: During the all sky survey (May 1991 to November 1992) of the Compton Gamma Ray Observatory, the Vela pulsar PSR0833-45 was in the field of view of the Energetic Gamma Ray Experiment Telescope (EGRET) in ten separate viewing periods. The pulsar was detected in each one. The average intensity from 100 MeV to 2GeV was (7.8 +/- 1.0) x 10(exp -6) photons /sq cm/s, which indicates that the pulsar in the years 1991/92 was in a state comparable to the low fluxes observed in 1977-1980. No significant changes in intensity were detected during the EGRET observations. The total spectrum of PSR0833-45 measured by EGRET can be described by a power-law with index -1.70 +/- 0.02 over the range 30 MeV to 2 GeV. The extrapolation of this spectrum into the 3-30 MeV range agrees with the observations by COMPTEL. Above 2-4 GeV EGRET detects a strong spectral break. The lightcurves obtained show a familiar structure in the phase histogram: two peaks separated by 0.424 +/- 0.002 in phase with considerable emission in the phase interval between the peaks. The first gamma ray peak maximum trails the single radio peak maximum by 10.54 +/- 0.09 ms (= 0.118 +/- 0.001 in phase). The widths of the emission peaks (FWHM) are 2.7 ms for the first peak (0.03 phase) and 4.1 ms for the second peak (0.05 phase). The widths are approximately constant below a GeV, but show a tendency to become narrower at higher energies. The statistics available for the Vela observations allow for a division of the lightcurve into eight phase intervals. The emission peak cores (central FWHM) with leading and trailing wings and two interval regions were defined and spectra were derived for all parts of the lightcurve. The energy spectra for the eight phase intervals show significant differences: the first peak (approximately E(exp -1.81 +/- 0.04)) is somewhat softer than the second peak (approximately E(exp -1.71 +/- 0.03)); the wings attached to each peak show softer spectra than the core of the peaks; the interval emission has the hardest spectrum (approximately E(exp -1.52 +/- 0.03)).
    Keywords: ASTRONOMY
    Type: Astronomy and Astrophysics (ISSN 0004-6361); 289; 3; p. 855-867
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: As part of its ongoing survey of the high-energy gamma-ray sky, the Energetic Gamma Ray Experiment Telescope (EGRET) on the Compton Gamma Ray Observatory has searched for emission from spin-powered pulsars, five of which have now been detected in the energy range 30 MeV less than or = E less than or = 20 GeV. A systematic study of the all-sky survey has found no additional pulsed gamma-ray sources. The pulsar detections, coupled with the upper limits on pulsed gamma radiation from other radio pulsars, indicate that the simplest models of gamma-ray pulsars are incomplete.
    Keywords: ASTRONOMY
    Type: Astrophysical Journal, Part 1 (ISSN 0004-367X); 436; 1; p. 229-238
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: We report upper limits to the high-energy gamma-ray emission from the millisecond pulsars (MSPs) in a number of globular clusters. The observations were done as part of an all-sky survey by the energetic Gamma Ray Experiment Telescope (EGRET) on the Compton Gamma Ray Observatory (CGRO) during Phase I of the CGRO mission (1991 June to 1992 November). Several theoretical models suggest that MSPs may be sources of high-energy gamma radiation emitted either as primary radiation from the pulsar magnetosphere or as secondary radiation generated by conversion into photons of a substantial part of the relativistic e(+/-) pair wind expected to flow from the pulsar. To date, no high-energy emission has been detected from an individual MSP. However, a large number of MSPs are expected in globular cluster cores where the formation rate of accreting binary systems is high. Model predictions of the total number of pulsars range in the hundreds for some clusters. These expectations have been reinforced by recent discoveries of a substantial number of radio MSPs in several clusters; for example, 11 have been found in 47 Tucanae (Manchester et al.). The EGRET observations have been used to obtain upper limits for the efficiency eta of conversion of MSP spin-down power into hard gamma rays. The upper limits are also compared with the gamma-ray fluxes predicted from theoretical models of pulsar wind emission (Tavani). The EGRET limits put significant constraints on either the emission models or the number of pulsars in the globular clusters.
    Keywords: ASTRONOMY
    Type: Astrophysical Journal, Part 1 (ISSN 0004-637X); 435; 1; p. 218-224
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: In this catalog the results related to high-energy gamma-ray sources obtained from the Energetic Gamma Ray Experiment Telescope (EGRET) on the Compton Gamma Ray Observatory are summarized for the period from 1991 April 22 to 1992 November 17, called phase 1. This phase of the Compton Observatory mission was devoted to an all-sky survey. Tables are included for the following EGRET results: solar flares with detected gamma radiation; pulsars; sources with absolute value of b is less than 10 deg, gamma-ray bursts; normal galaxies; clusters of galaxies; positive detections of radio-loud quasars and BL Lac objects; marginal detections of radio-loud quasars and BL Lac objects; upper limits for radio-loud quasars and BL Lac objects; upper limits for Seyfert galaxies and selected radio-quiet quasars, and other sources with absolute value of b is greater than or equal to 10 deg the Galactic plane. There is also a table relating the dates of the observations to the Compton Observatory viewing period numbers to assist in referencing the observations.
    Keywords: ASTRONOMY
    Type: The Astrophysical Journal (ISSN 0067-0049); 94; 2; p. 551-581
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: The Crab pulsar and nebula were observed three times in 1991 April to June by the Energetic Gamma-Ray Experiment Telescope (EGRET) on the Compton Gamma-Ray Observatory (CGRO): April 23 to May 7, May 16 to 30, and June 8 to 15. The results of analysis of the gamma-ray emission in the energy range from 50 MeV to more than 10 GeV are reported. The observed gamma-ray light curve exhibits two peaks separated in phase by 0.40 +/- 0.02, consistent with previous observations. The total pulsed emission from the Crab pulsar is found to be well represented by a power-law spectrum, softer than the spectrum measured by COS B (Clear et al., 1987). The interpulse emission has a harder spectrum than either of the pulses. The evidence for pulsed emission above 5 GeV in the EGRET data is not conclusive. Unpulsed emission in the energy range 50 MeV to 5 GeV was detected, with an indication of a hardening of the unpulsed spectrum above about 1 GeV. There was a significant change in the light curve over the 2 months of these observations, although the shape of the spectrum remained constant.
    Keywords: ASTRONOMY
    Type: Astrophysical Journal, Part 1 (ISSN 0004-637X); 409; 2; p. 697-704.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: We present coordinated multiwavelength observations of the bright, nearby BL Lacertae object Markarian 421 (Mrk 421) taken in 2013 January-March, involving GASP-WEBT, Swift, NuSTAR, Fermi-LAT, MAGIC, VERITAS, and other collaborations and instruments, providing data from radio to very high energy (VHE) gamma-ray bands. NuSTAR yielded previously unattainable sensitivity in the 3-79 kiloelectronvolt range, revealing that the spectrum softens when the source is dimmer until the X-ray spectral shape saturates into a steep Gamma approximating 3 power law, with no evidence for an exponential cutoff or additional hard components up to 80 kiloelectronvolts. For the first time, we observed both the synchrotron and the inverse-Compton peaks of the spectral energy distribution (SED) simultaneously shifted to frequencies below the typical quiescent state by an order of magnitude. The fractional variability as a function of photon energy shows a double-bump structure that relates to the two bumps of the broadband SED. In each bump, the variability increases with energy, which, in the framework of the synchrotron self-Compton model, implies that the electrons with higher energies are more variable. The measured multi band variability, the significant X-ray-to-VHE correlation down to some of the lowest fluxes ever observed in both bands, the lack of correlation between optical/UV and X-ray flux, the low degree of polarization and its significant (random) variations, the short estimated electron cooling time, and the significantly longer variability timescale observed in the NuSTAR light curves point toward in situ electron acceleration and suggest that there are multiple compact regions contributing to the broadband emission of Mrk 421 during low-activity states.
    Keywords: Astrophysics; Astronomy
    Type: GSFC-E-DAA-TN40232 , The Astrophysical Journal (ISSN 2041-8205) (e-ISSN 2041-8213); 819; 2; 152
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: Using data from the Fermi Large Area Telescope (LAT), we report the first clear gamma-ray measurement of a delay between flares from the gravitationally lensed images of a blazar. The delay was detected in B0218+357, a known double-image lensed system, during a period of enhanced gamma-ray activity with peak fluxes consistently observed to reach greater than 20-50 times its previous average flux. An auto-correlation function analysis identified a delay in the gamma-ray data of 11.46 plus or minus 0.16 days (1 sigma) that is approximately 1 day greater than previous radio measurements. Considering that it is beyond the capabilities of the LAT to spatially resolve the two images, we nevertheless decomposed individual sequences of superposing gamma-ray flares/delayed emissions. In three such approximately 8-10 day-long sequences within an approximately 4-month span, considering confusion due to overlapping flaring emission and flux measurement uncertainties, we found flux ratios consistent with approximately 1, thus systematically smaller than those from radio observations. During the first, best-defined flare, the delayed emission was detailed with a Fermi pointing, and we observed flux doubling timescales of approximately 3-6 hours implying as well extremely compact gamma-ray emitting regions.
    Keywords: Astronomy; Astrophysics
    Type: GSFC-E-DAA-TN21851 , The Astrophysical Journal Letter (ISSN 1538-4357); 782; 2; L14
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...