ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (4)
  • ASTRODYNAMICS  (3)
  • SPACECRAFT INSTRUMENTATION  (1)
Collection
  • Other Sources  (4)
Years
  • 1
    Publication Date: 2011-08-24
    Description: A reduced dynamic filtering strategy that exploits the unique geometric strength of the Global Positioning System (GPS) to minimize the effects of force model errors has yielded orbit solutions for TOPEX/POSEIDON which appear accurate to better than 3 cm (1 sigma) in the radial component. Reduction of model error also reduces the geographic correlation of the orbit error. With a traditional dynamic approach, GPS yields radial orbit accuracies of 4-5 cm, comparable to the accuracy delivered by satellite laser ranging and the Doppler orbitography and radio positioning integrated by satellite (DORIS) tracking system. A portion of the dynamic orbit error is in the Joint Gravity Model-2 (JGM-2); GPS data from TOPEX/POSEIDON can readily reveal that error and have been used to improve the gravity model.
    Keywords: SPACECRAFT INSTRUMENTATION
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; C12; p. 24,449-24,464
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-08-28
    Description: The reduced dynamic Global Positioning System (GPS) tracking technique has been applied for the first time as part of the GPS experiment on TOPEX/Poseidon. This technique employs local geometric position corrections to reduce orbit errors caused by the mismodeling of satellite forces. Results for a 29-day interval in early 1993 are evaluated through postfit residuals and formal errors, comparison with GPS and laser/DORIS dynamic solutions, comparisons on 6-hr overlaps of adjacent 30-hr data arcs, altimetry closure and crossover analysis. Reduced dynamic orbits yield slightly better crossover agreement than other techniques and appear to be accurate in altitude to about 3 cm RMS.
    Keywords: ASTRODYNAMICS
    Type: Geophysical Research Letters (ISSN 0094-8276); 21; 7; p. 541-544
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: The TOPEX/Poseidon satellite oceanography mission will require very accurate orbit determination in order to fulfill its mission requirements of altimetrically mapping the ocean surface with approximately 10 centimeter accuracy. To meet such stringent orbit determination specifications will require very accurate tracking data and very accurate dynamical models of the satellite motion. The accuracy of the TOPEX/Poseidon orbit is expected to be driven by the accuracy of the earth's gravity field model. Expected orbit accuracy for several recent gravity models is presented. Both the capability of the models for modeling the motion of TOPEX/Poseidon and their global modeling characteristics are discussed. In addition, the gravity model improvement that can be expected by utilizing GPS tracking of TOPEX/Poseidon is evaluated. This evalution is based on a recent simulation of a gravity field recovery using 10 days of TOPEX/Poseidon GPS tracking.
    Keywords: ASTRODYNAMICS
    Type: AAS PAPER 91-353 , AAS/AIAA Astrodynamics Conference; Aug 19, 1991 - Aug 22, 1991; Durango, CO; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: The gravity bin technique as originally formulated recovers the local gravity field from the bin parameters by finite differencing. The spherical harmonic coefficients of the gravity field are then computed by an orthogonal transformation of the local gravity field. The result differs from that of the traditional method. This paper discusses the difference and proposes a new algorithm to convert the bin parameters to spherical harmonic coefficients. It is shown that the new method produces the same gravity field as the traditional method and maintains the high computational efficiency of the basic gravity bin technique.
    Keywords: ASTRODYNAMICS
    Type: AIAA PAPER 90-2943 , AIAA/AAS Astrodynamics Conference; Aug 20, 1990 - Aug 22, 1990; Portland, OR; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...