ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Song, Zhaoyang; Latif, Mojib; Park, Wonsun (2017): Expanding Greenland Ice Sheet Enhances Sensitivity of Plio-Pleistocene Climate to Obliquity Forcing in the Kiel Climate Model. Geophysical Research Letters, https://doi.org/10.1002/2017GL074835
    Publication Date: 2023-01-13
    Description: Proxy data suggest that the Plio-Pleistocene transition from ~3.2 - 3.0 to 2.5 Ma featured the onset of Northern Hemisphere glaciation and enhanced climate variability on obliquity timescale. Here, we investigate the influence of the expanding Greenland ice sheet (GrIS) on the mean climate and obliquity-related variability. Special attention is given to the Atlantic Meridional Overturning Circulation (AMOC). A series of climate model simulations suggest that the expanding GrIS weakens the AMOC by ~1 Sv, which is mainly due to reduced heat loss of the Greenland-Iceland-Norwegian Sea. Moreover, the expanded GrIS amplifies the Hadley circulation response to obliquity forcing. This drives enhanced obliquity-forced variations in freshwater export from the tropical Atlantic and in turn variations of the AMOC that increase by about a factor. The stronger AMOC response to obliquity forcing in turn drives a stronger global-mean near-surface temperature response. We conclude that the AMOC response to obliquity forcing is important to understand the enhanced climate variability on obliquity timescale during the Plio-Pleistocene transition.
    Keywords: File content; File format; File name; File size; Uniform resource locator/link to model result file
    Type: Dataset
    Format: text/tab-separated-values, 50 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2017. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 30 (2017): 6757-6769, doi:10.1175/JCLI-D-16-0461.1.
    Description: Arctic sea ice area (SIA) during late summer and early fall decreased substantially over the last four decades, and its decline accelerated beginning in the early 2000s. Statistical analyses of observations show that enhanced poleward moisture transport from the North Pacific to the Arctic Ocean contributed to the accelerated SIA decrease during the most recent period. As a consequence, specific humidity in the Arctic Pacific sector significantly increased along with an increase of downward longwave radiation beginning in 2002, which led to a significant acceleration in the decline of SIA in the Arctic Pacific sector. The resulting sea ice loss led to increased evaporation in the Arctic Ocean, resulting in a further increase of the specific humidity in mid-to-late fall, thus acting as a positive feedback to the sea ice loss. The overall set of processes is also found in a long control simulation of a coupled climate model.
    Description: This work was supported by the National Research Foundation of Korea Grant NRF-2009-C1AAA001-0093, funded by the Korean government (MEST), to HJL, YHK, and MOK. S-WY is supported by the Korea Meteorological Administration Research and Development Program under Grant KMIPA2015-1042. Y-OK is supported by the U.S. Department of Energy (DE-SC0014433) and National Science Foundation (OCE-1242989). WP acknowledges support from the BMBF project CLIMPRE InterDec (FKZ: 01LP1609B).
    Description: 2018-01-26
    Keywords: Pacific decadal oscillation ; Sea surface temperature ; Humidity ; Ice loss/growth
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-05-19
    Description: Global mean surface warming has stalled since the end of the twentieth century1,2, but the net radiation imbalance at the top of the atmosphere continues to suggest an increasingly warming planet. This apparent contradiction has been reconciled by an anomalous heat flux into the ocean3–8, induced by a shift towards a La Niña-like state with cold sea surface temperatures in the eastern tropical Pacific over the past decade or so. A significant portion of the heat missing fromthe atmosphere is therefore expected to be stored in the Pacific Ocean. However, in situ hydrographic records indicate that Pacific Ocean heat content has been decreasing9. Here, we analyse observations along with simulations from a global ocean–sea ice model to track the pathway of heat. We find that the enhanced heat uptake by the Pacific Ocean has been compensated by an increased heat transport from the Pacific Ocean to the Indian Ocean, carried by the Indonesian throughflow. As a result, Indian Ocean heat content has increased abruptly, which accounts for more than 70% of the global ocean heat gain in the upper 700m during the past decade. We conclude that the Indian Ocean has become increasingly important in modulating global climate variability.
    Description: PDF is Advanced Online copy 18 May 2015
    Description: Published
    Keywords: Attribution ; Indonesian throughflow ; ASFA_2015::H::Heat budget ; ASFA_2015::H::Heat transport ; ASFA_2015::V::Volume transport ; ASFA_2015::O::Ocean-atmosphere system
    Repository Name: AquaDocs
    Type: Journal Contribution , Refereed
    Format: pp.445-449
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...