ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Saccharomyces cerevisiae  (3)
  • AP-1 homolog   (1)
  • 1
    ISSN: 1432-0983
    Keywords: ABC superfamily ; Multidrug resistance ; Saccharomyces cerevisiae ; YDR1 gene
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A multidrug resistance gene, YDR1, of Saccharomyces cerevisiae, which encodes a 170-kDa protein of a member of the ABC superfamily, was identified. Disruption of YDR1 resulted in hypersensitivity to cycloheximide, cerulenin, compactin, staurosporine and fluphenazine, indicating that YDR1 is an important determinant of cross resistance to apparently-unrelated drugs. The Ydr1 protein bears the highest similarity to the S. cerevisiae Snq2 protein required for resistance to the mutagen 4-NQO. The drug-specificity analysis of YDR1 and SNQ2 by gene disruption, and its phenotypic suppression by the overexpressed genes, revealed overlapping, yet distinct, specificities. YDR1 was responsible for cycloheximide, cerulenin and compactin resistance, whereas, SNQ2 was responsible for 4-NQO resistance. The two genes had overlapping specificities toward staurosporine and fluphenazine. The transcription of YDR1 and SNQ2 was induced by various drugs, both relevant and irrelevant to the resistance caused by the gene, suggesting that drug specificity can be mainly attributed to the functional difference of the putative transporters. The transcription of these genes was also increased by heat shock. The yeast drug-resistance system provides a novel model for mammalian multidrug resistance.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0983
    Keywords: Heat-shock response ; Multidrug resistance ; AP-1 homolog ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We have examined whether the stress-induced transcriptional activation ofYDR1/PDR5/STS1 is mediated by yAP-1 and yAP-2. Of the stresses examined, heat shock-induced, rapid and transient PDR5 expression became very low in ayap1 yap2 double-gene disruptant, indicating that the yAP proteins mediate the response. Similar results were obtained withSNQ2, a close homologue ofPDR5. A set of 5′-truncation derivatives of thePDR5 gene identified the region from −484 to −434 as being sufficient for the response. A sequence similar to the yAP-1 recognition element recently identified in the stress-responsive yeast genes was found in this region and in the 5′-flanking sequences ofSNQ2.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0983
    Keywords: Key words  Heat-shock response  ;  Multidrug resistance  ; AP-1 homolog  ;  Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract   We have examined whether the stress-induced transcriptional activation of YDR1/PDR5/STS1 is mediated by yAP-1 and yAP-2. Of the stresses examined, heat shock-induced, rapid and transient PDR5 expression became very low in a yap1 yap2 double-gene disruptant, indicating that the yAP proteins mediate the response. Similar results were obtained with SNQ2, a close homologue of PDR5. A set of 5′-truncation derivatives of the PDR5 gene identified the region from –484 to –434 as being sufficient for the response. A sequence similar to the yAP-1 recognition element recently identified in the stress-responsive yeast genes was found in this region and in the 5′-flanking sequences of SNQ2.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1617-4623
    Keywords: Saccharomyces cerevisiae ; Transcriptional activator ; AP-1 ; Stress response
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The Saccharomyces cerevisiae YAP2 gene encoding an AP-1-like transcriptional activator protein was cloned by selection for genes that confer pleiotropic drug resistance when present in high copy number. The novel YAP2 gene encodes a protein of 45827 daltons and is homologous in part to a known transcriptional activator protein encoded by YAP1/PDR4/SNQ3/PAR1. Homology was found only in both terminal regions. The N-terminal portion contains a region rich in basic amino acids, followed by a “leucine zipper” motif. Overexpression of YAP2 led to the induction of expression of an AP-1 recognition element (ARE)-dependent promoter. The yap1 disruptant has been shown to be sensitive to H2O2. In this study, we demonstrated that the yap1 disruptant is also unable to grow in medium containing 150 μM cadmium, whereas the yap2 disruptant exhibited no significant phenotypes. However, YAP2 in high copy number did suppress cadmium sensitivity, but not H2O2 sensitivity of the yap1 disruptant. YAP1 was able to mediate both cadmium- and H2O2-induced transcriptional activation of an ARE-dependent promoter. A high-copy-number plasmid bearing YAP2 mediated cadmium-induced transcriptional activation of this promoter. The inductions were prevented by the antioxidant N-acetyl-l-cysteine.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...