ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AIRCRAFT PROPULSION AND POWER  (2)
Collection
Keywords
Years
  • 1
    Publication Date: 2019-06-27
    Description: The aerodynamic design for a half-scale fan vehicle, which would have application on an advanced transport aircraft, is described. The single stage advanced technology fan was designed to a pressure ratio of 1.8 at a tip speed of 503 m/sec 11,650 ft/sec). The fan and booster components are designed in a scale model flow size convenient for testing with existing facility and vehicle hardware. The design corrected flow per unit annulus area at the fan face is 215 kg/sec sq m (44.0 lb m/sec sq ft) with a hub-tip ratio of 0.38 at the leading edge of the fan rotor. This results in an inlet corrected airflow of 117.9 kg/sec (259.9 lb m/sec) for the selected rotor tip diameter if 90.37 cm (35.58 in.). The variable geometry inlet is designed utilizing a combination of high throat Mach number and acoustic treatment in the inlet diffuser for noise suppression (hybrid inlet). A variable fan exhaust nozzle was assumed in conjunction with the variable inlet throat area to limit the required area change of the inlet throat at approach and hence limit the overall diffusion and inlet length. The fan exit duct design was primarily influenced by acoustic requirements, including length of suppressor wall treatment; length, thickness and position on a duct splitter for additional suppressor treatment; and duct surface Mach numbers.
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: NASA-CR-134801 , R76AEG257-VOL-1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-27
    Description: Test results at design speed show fan total pressure ratio, weight flow, and adiabatic efficiency to be 2.2, 2.9, and 1.8% lower than design goal values. The hybrid acoustic inlet (which utilizes a high throat Mach number and acoustic wall treatment for noise suppression) demonstrated total pressure recoveries of 98.9% and 98.2% at takeoff and approach. Exhaust duct pressure losses differed between the hardwall duct and treated duct with splitter by about 0.6% to 2.0% in terms of fan exit average total pressure (depending on operating condition). When the measured results were used to estimate pressure losses, a cruise sfc penalty of 0.68%, due to the acoustically treated duct, was projected.
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: NASA-CR-134892 , R76AEG565-VOL-4
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...