ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-06-07
    Description: The Structural Tailoring of Engine Blades (STAEBL) program was initiated at NASA Lewis Research Center in 1980 to introduce optimal structural tailoring into the design process for aircraft gas turbine engine blades. The standard procedure for blade design is highly iterative with the engineer directly providing most of the decisions that control the design process. The goal of the STAEBL program has been to develop an automated approach to generate structurally optimal blade designs. The program has evolved as a three-phase effort with the developmental work being performed contractually by Pratt & Whitney Aircraft. Phase 1 was intended as a proof of concept in which two fan blades were structurally tailored to meet a full set of structural design constraints while minimizing DOC+I (direct operating cost plus interest) for a representative aircraft. This phase was successfully completed and was reported in reference 1 and 2. Phase 2 has recently been completed and is the basis for this discussion. During this phase, three tasks were accomplished: (1) a nonproprietary structural tailoring computer code was developed; (2) a dedicated approximate finite-element analysis was developed; and (3) an approximate large-deflection analysis was developed to assess local foreign object damage. Phase 3 is just beginning and is designed to incorporated aerodynamic analyses directly into the structural tailoring system in order to relax current geometric constraints.
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: NASA. Langley Research Center Recent Experiences in Multidisciplinary Analysis and Optimization, Part 1; 13 p
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-28
    Description: This Theoretical Manual includes the theories included in the Structural Tailoring of Engine Blades (STAEBL) computer program which was developed to perform engine fan and compressor blade numerical optimizations. These blade optimizations seek a minimum weight or cost design that satisfies practical blade design constraints, by controlling one to twenty design variables. The STAEBL constraint analyses include blade stresses, vibratory response, flutter, and foreign object damage. Blade design variables include airfoil thickness at several locations, blade chord, and construction variables: hole size for hollow blades, and composite material layup for composite blades.
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: NASA-CR-175112 , NAS 1.26:175112 , PWA-5774-40
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-06-28
    Description: This User's Manual contains instructions and demonstration case to prepare input data, run, and modify the Structural Tailoring of Engine Blades (STAEBL) computer code. STAEBL was developed to perform engine fan and compressor blade numerical optimizations. This blade optimization seeks a minimum weight or cost design that satisfies realistic blade design constraints, by tuning one to twenty design variables. The STAEBL constraint analyses include blade stresses, vibratory response, flutter, and foreign object damage. Blade design variables include airfoil thickness at several locations, blade chord, and construction variables: hole size for hollow blades, and composite material layup for composite blades.
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: NASA-CR-175113 , NAS 1.26:175113 , PWA-5774-39
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-06-28
    Description: This user's manual describes the Structural Tailoring of Advanced Turboprops program. It contains instructions to prepare the input for optimization, blade geometry and analysis, geometry generation, and finite element program control. In addition, a sample input file is provided as well as a section describing special applications (i.e., non-standard input).
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: NASA-CR-187101 , NAS 1.26:187101 , PWA-5967-43
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-06-28
    Description: A mathematical optimization procedure was developed for the structural tailoring of engine blades and was used to structurally tailor two engine fan blades constructed of composite materials without midspan shrouds. The first was a solid blade made from superhybrid composites, and the second was a hollow blade with metal matrix composite inlays. Three major computerized functions were needed to complete the procedure: approximate analysis with the established input variables, optimization of an objective function, and refined analysis for design verification.
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: NASA-CR-167949 , NAS 1.26:167949 , PWA-5774-21
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-06-28
    Description: The Structural Tailoring of Advanced Turboprops (STAT) computer program was developed to perform numerical optimizations on highly swept propfan blades. This manual describes the functionality of the STAT system from a programmer's viewpoint. It provides a top-down description of module intent and interaction. The purpose of this manual is to familiarize the programmer with the STAT system should he/she wish to enhance or verify the program's function.
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: NASA-CR-182164 , NAS 1.26:182164 , PWA-5967-51
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: Mathematical optimization is applied to the design of gas turbine fan blades. The automated procedure replaces the current manual process which requires experience and intuition on the part of the designer to achieve successful blade designs. The optimization procedure that is developed utilizes the COPES/CONMIN optimization code. Approximate vibration and stress analyses are used for the optimization process. Analysis recalibrations are achieved through the application of more detailed, refined analysis. Optimizations of a hollow titanium fan blade with composite inlays and of a superhybrid composite blade are demonstrated.
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: AIAA PAPER 83-0828 , Structures, Structural Dynamics and Materials Conference; May 02, 1983 - May 04, 1983; Lake Tahoe, NV
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...